cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073707 Coefficients of a power series whose convolution consists of only the even-indexed terms of the sequence.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, 72, 72, 129, 129, 186, 186, 301, 301, 416, 416, 664, 664, 912, 912, 1368, 1368, 1824, 1824, 2730, 2730, 3636, 3636, 5234, 5234, 6832, 6832, 9788, 9788, 12744, 12744, 17724, 17724, 22704, 22704, 31506, 31506
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Examples

			(1 + x + 2x^2 + 2x^3 + 5x^4 + 5x^5 + 8x^6 + 8x^7 + 28x^8 + 28x^9 + ...)^2 = (1 + 2x + 5x^2 + 8x^3 + 18x^4 + 28x^5 + 50x^6 + 72x^7 + 129x^8 + ...).
		

Crossrefs

Programs

  • Haskell
    a073707 n = a073707_list !! n
    a073707_list = 1 : f 0 0 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ zipWith (*) hzs (reverse hzs) where hzs = drop x zs
    -- Reinhard Zumkeller, Dec 21 2011
  • Mathematica
    nmax = 49; CoefficientList[ Series[ Product[ (1+x^(2^n))^(2^n), {n, 0, Log[nmax]/Log[2]}], {x, 0, nmax}], x] (* Jean-François Alcover, Jan 04 2013, from 2nd formula, modified by Vaclav Kotesovec, Oct 23 2020 *)
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=(1+x)*subst(A,x,x^2)^2); polcoeff(A,n))
    
  • PARI
    {a(n)=polcoeff(prod(k=0,#binary(n),(1+x^(2^k)+x*O(x^n))^(2^k)),n)}
    

Formula

G.f.: A(x) satisfies A(x) = (1+x)*A(x^2)^2, with A(0)=1.
G.f.: A(x) = Product_{n>=0} (1 + x^(2^n))^(2^n).
G.f.: A(x) = (1/(1 - x)) * Product_{n>=0} 1/(1 - x^(2^(n+1)))^(2^n). - Eitan Y. Levine, Jun 24 2023

Extensions

Definition corrected by Paul D. Hanna, Feb 25 2010
Data corrected for n > 45 by Reinhard Zumkeller, Dec 21 2011