cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A073708 Generating function A(x) satisfies A(x) = (1+x)^2*A(x^2)^2, with A(0)=1.

Original entry on oeis.org

1, 2, 5, 8, 18, 28, 50, 72, 129, 186, 301, 416, 664, 912, 1368, 1824, 2730, 3636, 5234, 6832, 9788, 12744, 17724, 22704, 31506, 40308, 54730, 69152, 93592, 118032, 156888, 195744, 259625, 323506, 423021, 522536, 681642, 840748, 1083402, 1326056, 1705665
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 8*x^3 + 18*x^4 + 28*x^5 + 50*x^6 +...
where A(x)^2 = 1 + 4*x + 14*x^2 + 36*x^3 + 93*x^4 + 208*x^5 + 456*x^6 +...
This sequence equals the self-convolution of A073707, which begins:
[1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, ...].
The first differences of this sequence result in A073709:
[1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, ...];
the self-convolution of A073709 yields A073710:
[1, 2, 7, 12, 35, 58, 133, 208, ...],
which in turn equals the first differences of the unique terms of A073709.
		

Crossrefs

Cf. A073709, A073710. A073707(2n)=a(n).

Programs

  • Haskell
    a073708 n = a073708_list !! n
    a073708_list = conv a073707_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    A073708list[n_] := Module[{m = 1, A = 1}, While[m <= n, m = 2 m; A = ((1 + x)*(A /. x -> x^2))^2] + O[x]^m; CoefficientList[A, x][[1 ;; n]]]; A073708list[50] (* Jean-François Alcover, Apr 21 2016, adapted from PARI *)
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=((1+x)*subst(A,x,x^2))^2); polcoeff(A,n))
    

Formula

Equals the self-convolution of A073707.

Extensions

Edited by Michael Somos, May 03 2003
Edited by Paul D. Hanna, Jan 04 2013

A073709 First differences of A073708.

Original entry on oeis.org

1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, 248, 248, 456, 456, 906, 906, 1598, 1598, 2956, 2956, 4980, 4980, 8802, 8802, 14422, 14422, 24440, 24440, 38856, 38856, 63881, 63881, 99515, 99515, 159106, 159106, 242654, 242654, 379609, 379609
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2002

Keywords

Comments

The convolution of this sequence results in A073710 and is equal to the first differences of the unique terms of this sequence.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 10*x^4 + 10*x^5 + 22*x^6 + 22*x^7 +...
where A(x) =  A(x^2)^2/(1-x) and thus
A(x) = 1 / [(1-x)*(1-x^2)^2*(1-x^4)^4*(1-x^8)^8*(1-x^16)^16*...].
Compare A(x)*(1-x) to A(x)^2:
A(x)*(1-x) = 1 + 2*x^2 + 7*x^4 + 12*x^6 + 35*x^8 + 58*x^10 + 133*x^12 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 12*x^3 + 35*x^4 + 58*x^5 + 133*x^6 + 208*x^7 +...
Also note that
A(x)^2/(1-x) = 1 + 3*x + 10*x^2 + 22*x^3 + 57*x^4 + 115*x^5 + 248*x^6 + 456*x^7 +...
		

Crossrefs

Programs

  • Haskell
    a073709 n = a073709_list !! n
    a073709_list = 1 : zipWith (-) (tail a073708_list) a073708_list
    --- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    terms = 42; For[m = 1; A = 1, m <= 2*terms, m = 2*m, A = ((1+x)*(Normal[A] /. x -> x^2))^2 + O[x]^m]; Join[{1}, Differences[CoefficientList[A, x] ]][[1 ;; terms]] (* Jean-François Alcover, Mar 06 2013, updated Apr 23 2016 *)
  • PARI
    {a(n)=polcoeff(prod(j=0,#binary(n),1/(1-x^(2^j)+x*O(x^n))^(2^j)),n)} \\ Paul D. Hanna, May 01 2010
    

Formula

G.f. satisfies: A(x) = A(x^2)^2/(1-x).
G.f.: Product_{n>=0} 1/(1-x^(2^n))^(2^n). [Paul D. Hanna, May 01 2010]

A073710 Convolution of A073709, which is also the first differences of the unique terms of A073709.

Original entry on oeis.org

1, 2, 7, 12, 35, 58, 133, 208, 450, 692, 1358, 2024, 3822, 5620, 10018, 14416, 25025, 35634, 59591, 83548, 136955, 190362, 303725, 417088, 655128, 893168, 1374632, 1856096, 2820456, 3784816, 5658968, 7533120, 11144042, 14754964, 21542374
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2002

Keywords

Comments

First differences consist of duplicated terms: {1, 1, 5, 5, 23, 23, 75, 75, 242, 242, 666, 666, 1798, 1798, ...}; the convolution of these first differences results in: {1, 2, 11, 20, 81, 142, 451, 760, 2143, 3526, 8965, ...}, which in turn has first differences that consist of duplicated terms: {1, 1, 9, 9, 61, 61, 309, 309, ...}.

Examples

			(1 +x +3x^2 +3x^3 +10x^4 +10x^5 +22x^6 +22x^7 +57x^8 +57x^9 +...)^2 = (1 +2x +7x^2 +12x^3 +35x^4 +58x^5 +133x^6 +208x^7 +450x^8 +...) and the first differences of the unique terms {1,3,10,22,57,...} is {1,2,7,12,35,...}.
		

Crossrefs

Programs

  • Haskell
    a073710 n = a073710_list !! n
    a073710_list = conv a073709_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    max = 70; f[x_] := Sum[ a[k]*x^k, {k, 0, max}]; a[0] = a[1] = 1; coes = CoefficientList[ Series[ f[x^2]^2 - (1 - x)*f[x], {x, 0, max}], x]; A073709 = Table[a[k], {k, 0, max}] /. Solve[ Thread[coes == 0]] // First; A073709 // Union // Differences // Prepend[#, 1]&

Formula

Let f(x) = sum_{n=0..inf} A073709(n) x^n, then f(x) satisfies f(x)^2 = sum_{n=0..inf} a(n) x^n, as well as the functional equation f(x^2)^2 = (1 - x)*f(x).

A321325 G.f. satisfies: A(x) = (1 + x) * Product_{k>0} A(x^(2*k)) / Product_{k>1} A(x^(2*k-1)).

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 0, -2, 2, 1, 2, -3, 1, -3, -1, -7, 8, 4, 9, -7, 7, -7, 0, -21, 15, 2, 18, -23, 8, -25, -1, -43, 46, 17, 58, -34, 40, -41, 9, -98, 79, 10, 100, -98, 40, -123, -2, -191, 176, 43, 237, -136, 144, -192, 30, -362, 277, 12, 373, -314, 131, -457, -9, -606
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2018

Keywords

Crossrefs

Formula

G.f.: Product_{k>0} (1 + x^k)^A067856(k).
Product_{k>0} A(x^k) = Product_{k>=0} (1 + x^(2^k))^(2^k). (Cf. A073707.)

A321327 Expansion of Product_{k>=0} (1 - x^(2^k))^(2^k).

Original entry on oeis.org

1, -1, -2, 2, -3, 3, 8, -8, -6, 6, 4, -4, 26, -26, -56, 56, -7, 7, 70, -70, -51, 51, 32, -32, 120, -120, -272, 272, -200, 200, 672, -672, -182, 182, -308, 308, 1026, -1026, -1744, 1744, -660, 660, 3064, -3064, -916, 916, -1232, 1232, 2466, -2466, -3700, 3700, -3990, 3990
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2018

Keywords

Crossrefs

Convolution inverse of A073709.

Formula

G.f.: A(x) satisfies A(x) = (1 - x) * A(x^2)^2, with A(0) = 1.
Showing 1-5 of 5 results.