cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A073709 First differences of A073708.

Original entry on oeis.org

1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, 248, 248, 456, 456, 906, 906, 1598, 1598, 2956, 2956, 4980, 4980, 8802, 8802, 14422, 14422, 24440, 24440, 38856, 38856, 63881, 63881, 99515, 99515, 159106, 159106, 242654, 242654, 379609, 379609
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2002

Keywords

Comments

The convolution of this sequence results in A073710 and is equal to the first differences of the unique terms of this sequence.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 10*x^4 + 10*x^5 + 22*x^6 + 22*x^7 +...
where A(x) =  A(x^2)^2/(1-x) and thus
A(x) = 1 / [(1-x)*(1-x^2)^2*(1-x^4)^4*(1-x^8)^8*(1-x^16)^16*...].
Compare A(x)*(1-x) to A(x)^2:
A(x)*(1-x) = 1 + 2*x^2 + 7*x^4 + 12*x^6 + 35*x^8 + 58*x^10 + 133*x^12 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 12*x^3 + 35*x^4 + 58*x^5 + 133*x^6 + 208*x^7 +...
Also note that
A(x)^2/(1-x) = 1 + 3*x + 10*x^2 + 22*x^3 + 57*x^4 + 115*x^5 + 248*x^6 + 456*x^7 +...
		

Crossrefs

Programs

  • Haskell
    a073709 n = a073709_list !! n
    a073709_list = 1 : zipWith (-) (tail a073708_list) a073708_list
    --- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    terms = 42; For[m = 1; A = 1, m <= 2*terms, m = 2*m, A = ((1+x)*(Normal[A] /. x -> x^2))^2 + O[x]^m]; Join[{1}, Differences[CoefficientList[A, x] ]][[1 ;; terms]] (* Jean-François Alcover, Mar 06 2013, updated Apr 23 2016 *)
  • PARI
    {a(n)=polcoeff(prod(j=0,#binary(n),1/(1-x^(2^j)+x*O(x^n))^(2^j)),n)} \\ Paul D. Hanna, May 01 2010
    

Formula

G.f. satisfies: A(x) = A(x^2)^2/(1-x).
G.f.: Product_{n>=0} 1/(1-x^(2^n))^(2^n). [Paul D. Hanna, May 01 2010]

A073707 Coefficients of a power series whose convolution consists of only the even-indexed terms of the sequence.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, 72, 72, 129, 129, 186, 186, 301, 301, 416, 416, 664, 664, 912, 912, 1368, 1368, 1824, 1824, 2730, 2730, 3636, 3636, 5234, 5234, 6832, 6832, 9788, 9788, 12744, 12744, 17724, 17724, 22704, 22704, 31506, 31506
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Examples

			(1 + x + 2x^2 + 2x^3 + 5x^4 + 5x^5 + 8x^6 + 8x^7 + 28x^8 + 28x^9 + ...)^2 = (1 + 2x + 5x^2 + 8x^3 + 18x^4 + 28x^5 + 50x^6 + 72x^7 + 129x^8 + ...).
		

Crossrefs

Programs

  • Haskell
    a073707 n = a073707_list !! n
    a073707_list = 1 : f 0 0 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ zipWith (*) hzs (reverse hzs) where hzs = drop x zs
    -- Reinhard Zumkeller, Dec 21 2011
  • Mathematica
    nmax = 49; CoefficientList[ Series[ Product[ (1+x^(2^n))^(2^n), {n, 0, Log[nmax]/Log[2]}], {x, 0, nmax}], x] (* Jean-François Alcover, Jan 04 2013, from 2nd formula, modified by Vaclav Kotesovec, Oct 23 2020 *)
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=(1+x)*subst(A,x,x^2)^2); polcoeff(A,n))
    
  • PARI
    {a(n)=polcoeff(prod(k=0,#binary(n),(1+x^(2^k)+x*O(x^n))^(2^k)),n)}
    

Formula

G.f.: A(x) satisfies A(x) = (1+x)*A(x^2)^2, with A(0)=1.
G.f.: A(x) = Product_{n>=0} (1 + x^(2^n))^(2^n).
G.f.: A(x) = (1/(1 - x)) * Product_{n>=0} 1/(1 - x^(2^(n+1)))^(2^n). - Eitan Y. Levine, Jun 24 2023

Extensions

Definition corrected by Paul D. Hanna, Feb 25 2010
Data corrected for n > 45 by Reinhard Zumkeller, Dec 21 2011

A073710 Convolution of A073709, which is also the first differences of the unique terms of A073709.

Original entry on oeis.org

1, 2, 7, 12, 35, 58, 133, 208, 450, 692, 1358, 2024, 3822, 5620, 10018, 14416, 25025, 35634, 59591, 83548, 136955, 190362, 303725, 417088, 655128, 893168, 1374632, 1856096, 2820456, 3784816, 5658968, 7533120, 11144042, 14754964, 21542374
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2002

Keywords

Comments

First differences consist of duplicated terms: {1, 1, 5, 5, 23, 23, 75, 75, 242, 242, 666, 666, 1798, 1798, ...}; the convolution of these first differences results in: {1, 2, 11, 20, 81, 142, 451, 760, 2143, 3526, 8965, ...}, which in turn has first differences that consist of duplicated terms: {1, 1, 9, 9, 61, 61, 309, 309, ...}.

Examples

			(1 +x +3x^2 +3x^3 +10x^4 +10x^5 +22x^6 +22x^7 +57x^8 +57x^9 +...)^2 = (1 +2x +7x^2 +12x^3 +35x^4 +58x^5 +133x^6 +208x^7 +450x^8 +...) and the first differences of the unique terms {1,3,10,22,57,...} is {1,2,7,12,35,...}.
		

Crossrefs

Programs

  • Haskell
    a073710 n = a073710_list !! n
    a073710_list = conv a073709_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    max = 70; f[x_] := Sum[ a[k]*x^k, {k, 0, max}]; a[0] = a[1] = 1; coes = CoefficientList[ Series[ f[x^2]^2 - (1 - x)*f[x], {x, 0, max}], x]; A073709 = Table[a[k], {k, 0, max}] /. Solve[ Thread[coes == 0]] // First; A073709 // Union // Differences // Prepend[#, 1]&

Formula

Let f(x) = sum_{n=0..inf} A073709(n) x^n, then f(x) satisfies f(x)^2 = sum_{n=0..inf} a(n) x^n, as well as the functional equation f(x^2)^2 = (1 - x)*f(x).

A321335 Expansion of 1/(1 - x) * Product_{k>=0} 1/(1 - x^(2^k))^(2^(k+1)).

Original entry on oeis.org

1, 3, 10, 22, 57, 115, 248, 456, 906, 1598, 2956, 4980, 8802, 14422, 24440, 38856, 63881, 99515, 159106, 242654, 379609, 569971, 873696, 1290784, 1945912, 2839080, 4213712, 6069808, 8890264, 12675080, 18334048, 25867168, 37011210, 51766174, 73308548, 101638332, 142626458
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2018

Keywords

Crossrefs

Partial sums of A073710.

Formula

G.f.: A(x) satisfies A(x) = ((1 + x) * A(x^2))^2 / (1 - x), with A(0) = 1.
a(n) = A073709(2*n) = A073709(2*n+1) for n >= 0.

A321354 Expansion of Product_{k>=0} (1 + x^(3^k))^(3^(k+1)).

Original entry on oeis.org

1, 3, 3, 10, 27, 27, 45, 108, 108, 147, 333, 333, 480, 1107, 1107, 1467, 3294, 3294, 3801, 8109, 8109, 9300, 19791, 19791, 22644, 48141, 48141, 50806, 104277, 104277, 107011, 216756, 216756, 224937, 458055, 458055, 454437, 905256, 905256, 870777, 1707075, 1707075
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Comments

Also the coefficient of x^(3*n) in the expansion of Product_{k>=0} (1 + x^(3^k))^(3^k).

Examples

			Product_{k>=0} (1 + x^(3^k))^(3^k) = 1 + x + 3*x^3 + 3*x^4 + 3*x^6 + 3*x^7 + 10*x^9 + 10*x^10 + 27*x^12 + 27*x^13 + 27*x^15 + 27*x^16 + 45*x^18 + 45*x^19 + ... .
		

Crossrefs

A321355 Expansion of Product_{k>=0} (1 + x^(4^k))^(4^(k+1)).

Original entry on oeis.org

1, 4, 6, 4, 17, 64, 96, 64, 136, 480, 720, 480, 680, 2240, 3360, 2240, 2444, 7536, 11304, 7536, 7276, 21568, 32352, 21568, 21080, 62752, 94128, 62752, 62968, 189120, 283680, 189120, 178646, 525464, 788196, 525464, 454614, 1292992, 1939488, 1292992, 1085688, 3049760
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Comments

Also the coefficient of x^(4*n) in the expansion of Product_{k>=0} (1 + x^(4^k))^(4^k).

Examples

			Product_{k>=0} (1 + x^(4^k))^(4^k) = 1 + x + 4*x^4 + 4*x^5 + 6*x^8 + 6*x^9 + 4*x^12 + 4*x^13 + 17*x^16 + 17*x^17 + 64*x^20 + 64*x^21 + 96*x^24 + 96*x^25 + ... .
		

Crossrefs

A321357 Expansion of Product_{k>=0} (1 + x^(5^k))^(5^(k+1)).

Original entry on oeis.org

1, 5, 10, 10, 5, 26, 125, 250, 250, 125, 325, 1500, 3000, 3000, 1500, 2600, 11500, 23000, 23000, 11500, 14950, 63250, 126500, 126500, 63250, 65905, 266275, 532550, 532550, 266275, 233480, 901125, 1802250, 1802250, 901125, 698425, 2591000, 5182000, 5182000, 2591000
Offset: 0

Views

Author

Seiichi Manyama, Nov 07 2018

Keywords

Comments

Also the coefficient of x^(5*n) in the expansion of Product_{k>=0} (1 + x^(5^k))^(5^k).

Examples

			Product_{k>=0} (1 + x^(5^k))^(5^k) = 1 + x + 5*x^5 + 5*x^6 + 10*x^10 + 10*x^11 + 10*x^15 + 10*x^16 + 5*x^20 + 5*x^21 + 26*x^25 + 26*x^26 + ... .
		

Crossrefs

A321336 Expansion of Product_{k>=0} (1 - x^(2^k))^(2^(k+1)).

Original entry on oeis.org

1, -2, -3, 8, -6, 4, 26, -56, -7, 70, -51, 32, 120, -272, -200, 672, -182, -308, 1026, -1744, -660, 3064, -916, -1232, 2466, -3700, -3990, 11680, -1416, -8848, 13752, -18656, -8503, 35662, -14331, -7000, 27122, -47244, -29870, 106984, -25895, -55194, 140173, -225152
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2018

Keywords

Crossrefs

Formula

Equals the self-convolution of A321327.
G.f.: A(x) satisfies A(x) = ((1 - x) * A(x^2))^2, with A(0) = 1.
a(n) = A321327(2*n) for n >= 0.
Showing 1-8 of 8 results.