A073709 First differences of A073708.
1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, 248, 248, 456, 456, 906, 906, 1598, 1598, 2956, 2956, 4980, 4980, 8802, 8802, 14422, 14422, 24440, 24440, 38856, 38856, 63881, 63881, 99515, 99515, 159106, 159106, 242654, 242654, 379609, 379609
Offset: 0
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 10*x^4 + 10*x^5 + 22*x^6 + 22*x^7 +... where A(x) = A(x^2)^2/(1-x) and thus A(x) = 1 / [(1-x)*(1-x^2)^2*(1-x^4)^4*(1-x^8)^8*(1-x^16)^16*...]. Compare A(x)*(1-x) to A(x)^2: A(x)*(1-x) = 1 + 2*x^2 + 7*x^4 + 12*x^6 + 35*x^8 + 58*x^10 + 133*x^12 +... A(x)^2 = 1 + 2*x + 7*x^2 + 12*x^3 + 35*x^4 + 58*x^5 + 133*x^6 + 208*x^7 +... Also note that A(x)^2/(1-x) = 1 + 3*x + 10*x^2 + 22*x^3 + 57*x^4 + 115*x^5 + 248*x^6 + 456*x^7 +...
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a073709 n = a073709_list !! n a073709_list = 1 : zipWith (-) (tail a073708_list) a073708_list --- Reinhard Zumkeller, Jun 13 2013
-
Mathematica
terms = 42; For[m = 1; A = 1, m <= 2*terms, m = 2*m, A = ((1+x)*(Normal[A] /. x -> x^2))^2 + O[x]^m]; Join[{1}, Differences[CoefficientList[A, x] ]][[1 ;; terms]] (* Jean-François Alcover, Mar 06 2013, updated Apr 23 2016 *)
-
PARI
{a(n)=polcoeff(prod(j=0,#binary(n),1/(1-x^(2^j)+x*O(x^n))^(2^j)),n)} \\ Paul D. Hanna, May 01 2010
Formula
G.f. satisfies: A(x) = A(x^2)^2/(1-x).
G.f.: Product_{n>=0} 1/(1-x^(2^n))^(2^n). [Paul D. Hanna, May 01 2010]
Comments