cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A073710 Convolution of A073709, which is also the first differences of the unique terms of A073709.

Original entry on oeis.org

1, 2, 7, 12, 35, 58, 133, 208, 450, 692, 1358, 2024, 3822, 5620, 10018, 14416, 25025, 35634, 59591, 83548, 136955, 190362, 303725, 417088, 655128, 893168, 1374632, 1856096, 2820456, 3784816, 5658968, 7533120, 11144042, 14754964, 21542374
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2002

Keywords

Comments

First differences consist of duplicated terms: {1, 1, 5, 5, 23, 23, 75, 75, 242, 242, 666, 666, 1798, 1798, ...}; the convolution of these first differences results in: {1, 2, 11, 20, 81, 142, 451, 760, 2143, 3526, 8965, ...}, which in turn has first differences that consist of duplicated terms: {1, 1, 9, 9, 61, 61, 309, 309, ...}.

Examples

			(1 +x +3x^2 +3x^3 +10x^4 +10x^5 +22x^6 +22x^7 +57x^8 +57x^9 +...)^2 = (1 +2x +7x^2 +12x^3 +35x^4 +58x^5 +133x^6 +208x^7 +450x^8 +...) and the first differences of the unique terms {1,3,10,22,57,...} is {1,2,7,12,35,...}.
		

Crossrefs

Programs

  • Haskell
    a073710 n = a073710_list !! n
    a073710_list = conv a073709_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    max = 70; f[x_] := Sum[ a[k]*x^k, {k, 0, max}]; a[0] = a[1] = 1; coes = CoefficientList[ Series[ f[x^2]^2 - (1 - x)*f[x], {x, 0, max}], x]; A073709 = Table[a[k], {k, 0, max}] /. Solve[ Thread[coes == 0]] // First; A073709 // Union // Differences // Prepend[#, 1]&

Formula

Let f(x) = sum_{n=0..inf} A073709(n) x^n, then f(x) satisfies f(x)^2 = sum_{n=0..inf} a(n) x^n, as well as the functional equation f(x^2)^2 = (1 - x)*f(x).

A073708 Generating function A(x) satisfies A(x) = (1+x)^2*A(x^2)^2, with A(0)=1.

Original entry on oeis.org

1, 2, 5, 8, 18, 28, 50, 72, 129, 186, 301, 416, 664, 912, 1368, 1824, 2730, 3636, 5234, 6832, 9788, 12744, 17724, 22704, 31506, 40308, 54730, 69152, 93592, 118032, 156888, 195744, 259625, 323506, 423021, 522536, 681642, 840748, 1083402, 1326056, 1705665
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 8*x^3 + 18*x^4 + 28*x^5 + 50*x^6 +...
where A(x)^2 = 1 + 4*x + 14*x^2 + 36*x^3 + 93*x^4 + 208*x^5 + 456*x^6 +...
This sequence equals the self-convolution of A073707, which begins:
[1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, ...].
The first differences of this sequence result in A073709:
[1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, ...];
the self-convolution of A073709 yields A073710:
[1, 2, 7, 12, 35, 58, 133, 208, ...],
which in turn equals the first differences of the unique terms of A073709.
		

Crossrefs

Cf. A073709, A073710. A073707(2n)=a(n).

Programs

  • Haskell
    a073708 n = a073708_list !! n
    a073708_list = conv a073707_list [] where
       conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
                        where ws' = v : ws
    -- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    A073708list[n_] := Module[{m = 1, A = 1}, While[m <= n, m = 2 m; A = ((1 + x)*(A /. x -> x^2))^2] + O[x]^m; CoefficientList[A, x][[1 ;; n]]]; A073708list[50] (* Jean-François Alcover, Apr 21 2016, adapted from PARI *)
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=((1+x)*subst(A,x,x^2))^2); polcoeff(A,n))
    

Formula

Equals the self-convolution of A073707.

Extensions

Edited by Michael Somos, May 03 2003
Edited by Paul D. Hanna, Jan 04 2013

A073707 Coefficients of a power series whose convolution consists of only the even-indexed terms of the sequence.

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, 72, 72, 129, 129, 186, 186, 301, 301, 416, 416, 664, 664, 912, 912, 1368, 1368, 1824, 1824, 2730, 2730, 3636, 3636, 5234, 5234, 6832, 6832, 9788, 9788, 12744, 12744, 17724, 17724, 22704, 22704, 31506, 31506
Offset: 0

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Examples

			(1 + x + 2x^2 + 2x^3 + 5x^4 + 5x^5 + 8x^6 + 8x^7 + 28x^8 + 28x^9 + ...)^2 = (1 + 2x + 5x^2 + 8x^3 + 18x^4 + 28x^5 + 50x^6 + 72x^7 + 129x^8 + ...).
		

Crossrefs

Programs

  • Haskell
    a073707 n = a073707_list !! n
    a073707_list = 1 : f 0 0 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ zipWith (*) hzs (reverse hzs) where hzs = drop x zs
    -- Reinhard Zumkeller, Dec 21 2011
  • Mathematica
    nmax = 49; CoefficientList[ Series[ Product[ (1+x^(2^n))^(2^n), {n, 0, Log[nmax]/Log[2]}], {x, 0, nmax}], x] (* Jean-François Alcover, Jan 04 2013, from 2nd formula, modified by Vaclav Kotesovec, Oct 23 2020 *)
  • PARI
    a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=(1+x)*subst(A,x,x^2)^2); polcoeff(A,n))
    
  • PARI
    {a(n)=polcoeff(prod(k=0,#binary(n),(1+x^(2^k)+x*O(x^n))^(2^k)),n)}
    

Formula

G.f.: A(x) satisfies A(x) = (1+x)*A(x^2)^2, with A(0)=1.
G.f.: A(x) = Product_{n>=0} (1 + x^(2^n))^(2^n).
G.f.: A(x) = (1/(1 - x)) * Product_{n>=0} 1/(1 - x^(2^(n+1)))^(2^n). - Eitan Y. Levine, Jun 24 2023

Extensions

Definition corrected by Paul D. Hanna, Feb 25 2010
Data corrected for n > 45 by Reinhard Zumkeller, Dec 21 2011

A321088 G.f. satisfies: A(x) = 1/(1 - x) * Product_{k>0} A(x^(2*k)) / Product_{k>1} A(x^(2*k-1)).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 4, -1, 9, 3, 11, -4, 17, -2, 11, -24, 31, -3, 39, -35, 70, -14, 47, -107, 112, -27, 122, -163, 198, -90, 93, -409, 282, -108, 329, -487, 601, -160, 324, -1076, 835, -165, 907, -1298, 1478, -429, 565, -2973, 1745, -427, 1999, -3149, 3587, -528
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2018

Keywords

Crossrefs

Convolution inverse of A321326.

Programs

  • Mathematica
    b[n_] := If[n == 1, 1, Product[{p, e} = pe; If[2 == p, e--, If[e > 1, p = 0, p = -1]]; p^e, {pe, FactorInteger[n]}]];
    etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
    a = etr[b];
    a /@ Range[0, 100] (* Jean-François Alcover, Oct 01 2019 *)

Formula

Euler transform of A067856.
G.f.: Product_{k>0} 1/(1 - x^k)^A067856(k).
Product_{k>0} A(x^k) = Product_{k>=0} 1/(1 - x^(2^k))^(2^k). (Cf. A073709.)

A321335 Expansion of 1/(1 - x) * Product_{k>=0} 1/(1 - x^(2^k))^(2^(k+1)).

Original entry on oeis.org

1, 3, 10, 22, 57, 115, 248, 456, 906, 1598, 2956, 4980, 8802, 14422, 24440, 38856, 63881, 99515, 159106, 242654, 379609, 569971, 873696, 1290784, 1945912, 2839080, 4213712, 6069808, 8890264, 12675080, 18334048, 25867168, 37011210, 51766174, 73308548, 101638332, 142626458
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2018

Keywords

Crossrefs

Partial sums of A073710.

Formula

G.f.: A(x) satisfies A(x) = ((1 + x) * A(x^2))^2 / (1 - x), with A(0) = 1.
a(n) = A073709(2*n) = A073709(2*n+1) for n >= 0.

A321327 Expansion of Product_{k>=0} (1 - x^(2^k))^(2^k).

Original entry on oeis.org

1, -1, -2, 2, -3, 3, 8, -8, -6, 6, 4, -4, 26, -26, -56, 56, -7, 7, 70, -70, -51, 51, 32, -32, 120, -120, -272, 272, -200, 200, 672, -672, -182, 182, -308, 308, 1026, -1026, -1744, 1744, -660, 660, 3064, -3064, -916, 916, -1232, 1232, 2466, -2466, -3700, 3700, -3990, 3990
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2018

Keywords

Crossrefs

Convolution inverse of A073709.

Formula

G.f.: A(x) satisfies A(x) = (1 - x) * A(x^2)^2, with A(0) = 1.

A357366 Expansion of Product_{k>=0} 1 / (1 - x^(2^k) - x^(2^(k+1)))^(2^k).

Original entry on oeis.org

1, 1, 4, 5, 18, 23, 59, 82, 203, 285, 610, 895, 1838, 2733, 5217, 7950, 14763, 22713, 40526, 63239, 110652, 173891, 297529, 471420, 796706, 1268126, 2116508, 3384634, 5606444, 8991078, 14791302, 23782380, 38955441, 62737821, 102388280, 165126101, 268844542, 433970643
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 37; CoefficientList[Series[Product[1/(1 - x^(2^k) - x^(2^(k + 1)))^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
    nmax = 37; A[] = 1; Do[A[x] = A[x^2]^2/(1 - x - x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = A(x^2)^2 / (1 - x - x^2).
a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=1} 1/(1 - x^(2^k) - x^(2^(k+1)))^(2^k) = 11.1991985012843182084779984477952870732899201240395056... and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Oct 08 2022
Showing 1-7 of 7 results.