A073710
Convolution of A073709, which is also the first differences of the unique terms of A073709.
Original entry on oeis.org
1, 2, 7, 12, 35, 58, 133, 208, 450, 692, 1358, 2024, 3822, 5620, 10018, 14416, 25025, 35634, 59591, 83548, 136955, 190362, 303725, 417088, 655128, 893168, 1374632, 1856096, 2820456, 3784816, 5658968, 7533120, 11144042, 14754964, 21542374
Offset: 0
(1 +x +3x^2 +3x^3 +10x^4 +10x^5 +22x^6 +22x^7 +57x^8 +57x^9 +...)^2 = (1 +2x +7x^2 +12x^3 +35x^4 +58x^5 +133x^6 +208x^7 +450x^8 +...) and the first differences of the unique terms {1,3,10,22,57,...} is {1,2,7,12,35,...}.
-
a073710 n = a073710_list !! n
a073710_list = conv a073709_list [] where
conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
where ws' = v : ws
-- Reinhard Zumkeller, Jun 13 2013
-
max = 70; f[x_] := Sum[ a[k]*x^k, {k, 0, max}]; a[0] = a[1] = 1; coes = CoefficientList[ Series[ f[x^2]^2 - (1 - x)*f[x], {x, 0, max}], x]; A073709 = Table[a[k], {k, 0, max}] /. Solve[ Thread[coes == 0]] // First; A073709 // Union // Differences // Prepend[#, 1]&
A073708
Generating function A(x) satisfies A(x) = (1+x)^2*A(x^2)^2, with A(0)=1.
Original entry on oeis.org
1, 2, 5, 8, 18, 28, 50, 72, 129, 186, 301, 416, 664, 912, 1368, 1824, 2730, 3636, 5234, 6832, 9788, 12744, 17724, 22704, 31506, 40308, 54730, 69152, 93592, 118032, 156888, 195744, 259625, 323506, 423021, 522536, 681642, 840748, 1083402, 1326056, 1705665
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 8*x^3 + 18*x^4 + 28*x^5 + 50*x^6 +...
where A(x)^2 = 1 + 4*x + 14*x^2 + 36*x^3 + 93*x^4 + 208*x^5 + 456*x^6 +...
This sequence equals the self-convolution of A073707, which begins:
[1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, ...].
The first differences of this sequence result in A073709:
[1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, ...];
the self-convolution of A073709 yields A073710:
[1, 2, 7, 12, 35, 58, 133, 208, ...],
which in turn equals the first differences of the unique terms of A073709.
-
a073708 n = a073708_list !! n
a073708_list = conv a073707_list [] where
conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
where ws' = v : ws
-- Reinhard Zumkeller, Jun 13 2013
-
A073708list[n_] := Module[{m = 1, A = 1}, While[m <= n, m = 2 m; A = ((1 + x)*(A /. x -> x^2))^2] + O[x]^m; CoefficientList[A, x][[1 ;; n]]]; A073708list[50] (* Jean-François Alcover, Apr 21 2016, adapted from PARI *)
-
a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=((1+x)*subst(A,x,x^2))^2); polcoeff(A,n))
A073707
Coefficients of a power series whose convolution consists of only the even-indexed terms of the sequence.
Original entry on oeis.org
1, 1, 2, 2, 5, 5, 8, 8, 18, 18, 28, 28, 50, 50, 72, 72, 129, 129, 186, 186, 301, 301, 416, 416, 664, 664, 912, 912, 1368, 1368, 1824, 1824, 2730, 2730, 3636, 3636, 5234, 5234, 6832, 6832, 9788, 9788, 12744, 12744, 17724, 17724, 22704, 22704, 31506, 31506
Offset: 0
(1 + x + 2x^2 + 2x^3 + 5x^4 + 5x^5 + 8x^6 + 8x^7 + 28x^8 + 28x^9 + ...)^2 = (1 + 2x + 5x^2 + 8x^3 + 18x^4 + 28x^5 + 50x^6 + 72x^7 + 129x^8 + ...).
-
a073707 n = a073707_list !! n
a073707_list = 1 : f 0 0 [1] where
f x y zs = z : f (x + y) (1 - y) (z:zs) where
z = sum $ zipWith (*) hzs (reverse hzs) where hzs = drop x zs
-- Reinhard Zumkeller, Dec 21 2011
-
nmax = 49; CoefficientList[ Series[ Product[ (1+x^(2^n))^(2^n), {n, 0, Log[nmax]/Log[2]}], {x, 0, nmax}], x] (* Jean-François Alcover, Jan 04 2013, from 2nd formula, modified by Vaclav Kotesovec, Oct 23 2020 *)
-
a(n)=local(A,m); if(n<0,0,m=1; A=1+O(x); while(m<=n,m*=2; A=(1+x)*subst(A,x,x^2)^2); polcoeff(A,n))
-
{a(n)=polcoeff(prod(k=0,#binary(n),(1+x^(2^k)+x*O(x^n))^(2^k)),n)}
A321088
G.f. satisfies: A(x) = 1/(1 - x) * Product_{k>0} A(x^(2*k)) / Product_{k>1} A(x^(2*k-1)).
Original entry on oeis.org
1, 1, 2, 1, 4, 2, 4, -1, 9, 3, 11, -4, 17, -2, 11, -24, 31, -3, 39, -35, 70, -14, 47, -107, 112, -27, 122, -163, 198, -90, 93, -409, 282, -108, 329, -487, 601, -160, 324, -1076, 835, -165, 907, -1298, 1478, -429, 565, -2973, 1745, -427, 1999, -3149, 3587, -528
Offset: 0
-
b[n_] := If[n == 1, 1, Product[{p, e} = pe; If[2 == p, e--, If[e > 1, p = 0, p = -1]]; p^e, {pe, FactorInteger[n]}]];
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
a = etr[b];
a /@ Range[0, 100] (* Jean-François Alcover, Oct 01 2019 *)
A321335
Expansion of 1/(1 - x) * Product_{k>=0} 1/(1 - x^(2^k))^(2^(k+1)).
Original entry on oeis.org
1, 3, 10, 22, 57, 115, 248, 456, 906, 1598, 2956, 4980, 8802, 14422, 24440, 38856, 63881, 99515, 159106, 242654, 379609, 569971, 873696, 1290784, 1945912, 2839080, 4213712, 6069808, 8890264, 12675080, 18334048, 25867168, 37011210, 51766174, 73308548, 101638332, 142626458
Offset: 0
A321327
Expansion of Product_{k>=0} (1 - x^(2^k))^(2^k).
Original entry on oeis.org
1, -1, -2, 2, -3, 3, 8, -8, -6, 6, 4, -4, 26, -26, -56, 56, -7, 7, 70, -70, -51, 51, 32, -32, 120, -120, -272, 272, -200, 200, 672, -672, -182, 182, -308, 308, 1026, -1026, -1744, 1744, -660, 660, 3064, -3064, -916, 916, -1232, 1232, 2466, -2466, -3700, 3700, -3990, 3990
Offset: 0
A357366
Expansion of Product_{k>=0} 1 / (1 - x^(2^k) - x^(2^(k+1)))^(2^k).
Original entry on oeis.org
1, 1, 4, 5, 18, 23, 59, 82, 203, 285, 610, 895, 1838, 2733, 5217, 7950, 14763, 22713, 40526, 63239, 110652, 173891, 297529, 471420, 796706, 1268126, 2116508, 3384634, 5606444, 8991078, 14791302, 23782380, 38955441, 62737821, 102388280, 165126101, 268844542, 433970643
Offset: 0
-
nmax = 37; CoefficientList[Series[Product[1/(1 - x^(2^k) - x^(2^(k + 1)))^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
nmax = 37; A[] = 1; Do[A[x] = A[x^2]^2/(1 - x - x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Showing 1-7 of 7 results.
Comments