cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073709 First differences of A073708.

Original entry on oeis.org

1, 1, 3, 3, 10, 10, 22, 22, 57, 57, 115, 115, 248, 248, 456, 456, 906, 906, 1598, 1598, 2956, 2956, 4980, 4980, 8802, 8802, 14422, 14422, 24440, 24440, 38856, 38856, 63881, 63881, 99515, 99515, 159106, 159106, 242654, 242654, 379609, 379609
Offset: 0

Views

Author

Paul D. Hanna, Aug 05 2002

Keywords

Comments

The convolution of this sequence results in A073710 and is equal to the first differences of the unique terms of this sequence.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 3*x^3 + 10*x^4 + 10*x^5 + 22*x^6 + 22*x^7 +...
where A(x) =  A(x^2)^2/(1-x) and thus
A(x) = 1 / [(1-x)*(1-x^2)^2*(1-x^4)^4*(1-x^8)^8*(1-x^16)^16*...].
Compare A(x)*(1-x) to A(x)^2:
A(x)*(1-x) = 1 + 2*x^2 + 7*x^4 + 12*x^6 + 35*x^8 + 58*x^10 + 133*x^12 +...
A(x)^2 = 1 + 2*x + 7*x^2 + 12*x^3 + 35*x^4 + 58*x^5 + 133*x^6 + 208*x^7 +...
Also note that
A(x)^2/(1-x) = 1 + 3*x + 10*x^2 + 22*x^3 + 57*x^4 + 115*x^5 + 248*x^6 + 456*x^7 +...
		

Crossrefs

Programs

  • Haskell
    a073709 n = a073709_list !! n
    a073709_list = 1 : zipWith (-) (tail a073708_list) a073708_list
    --- Reinhard Zumkeller, Jun 13 2013
  • Mathematica
    terms = 42; For[m = 1; A = 1, m <= 2*terms, m = 2*m, A = ((1+x)*(Normal[A] /. x -> x^2))^2 + O[x]^m]; Join[{1}, Differences[CoefficientList[A, x] ]][[1 ;; terms]] (* Jean-François Alcover, Mar 06 2013, updated Apr 23 2016 *)
  • PARI
    {a(n)=polcoeff(prod(j=0,#binary(n),1/(1-x^(2^j)+x*O(x^n))^(2^j)),n)} \\ Paul D. Hanna, May 01 2010
    

Formula

G.f. satisfies: A(x) = A(x^2)^2/(1-x).
G.f.: Product_{n>=0} 1/(1-x^(2^n))^(2^n). [Paul D. Hanna, May 01 2010]