A073710 Convolution of A073709, which is also the first differences of the unique terms of A073709.
1, 2, 7, 12, 35, 58, 133, 208, 450, 692, 1358, 2024, 3822, 5620, 10018, 14416, 25025, 35634, 59591, 83548, 136955, 190362, 303725, 417088, 655128, 893168, 1374632, 1856096, 2820456, 3784816, 5658968, 7533120, 11144042, 14754964, 21542374
Offset: 0
Examples
(1 +x +3x^2 +3x^3 +10x^4 +10x^5 +22x^6 +22x^7 +57x^8 +57x^9 +...)^2 = (1 +2x +7x^2 +12x^3 +35x^4 +58x^5 +133x^6 +208x^7 +450x^8 +...) and the first differences of the unique terms {1,3,10,22,57,...} is {1,2,7,12,35,...}.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a073710 n = a073710_list !! n a073710_list = conv a073709_list [] where conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws' where ws' = v : ws -- Reinhard Zumkeller, Jun 13 2013
-
Mathematica
max = 70; f[x_] := Sum[ a[k]*x^k, {k, 0, max}]; a[0] = a[1] = 1; coes = CoefficientList[ Series[ f[x^2]^2 - (1 - x)*f[x], {x, 0, max}], x]; A073709 = Table[a[k], {k, 0, max}] /. Solve[ Thread[coes == 0]] // First; A073709 // Union // Differences // Prepend[#, 1]&
Formula
Let f(x) = sum_{n=0..inf} A073709(n) x^n, then f(x) satisfies f(x)^2 = sum_{n=0..inf} a(n) x^n, as well as the functional equation f(x^2)^2 = (1 - x)*f(x).
Comments