A073736 Sum of primes whose index is congruent to n (mod 3); equals the partial sums of A073737 (in which sums of three successive terms form the primes).
1, 2, 3, 6, 9, 14, 19, 26, 33, 42, 55, 64, 79, 96, 107, 126, 149, 166, 187, 216, 237, 260, 295, 320, 349, 392, 421, 452, 499, 530, 565, 626, 661, 702, 765, 810, 853, 922, 973, 1020, 1095, 1152, 1201, 1286, 1345, 1398, 1485, 1556, 1621, 1712, 1785, 1854, 1951
Offset: 0
Examples
a(10) = p_10 + p_7 + p_4 + p_1 = 29 + 17 + 7 + 2 = 55.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A073737.
Programs
-
Haskell
a073736 n = a073736_list !! n a073736_list = scanl1 (+) a073737_list -- Reinhard Zumkeller, Apr 28 2013
-
Mathematica
a[0] = 1; a[-1] = 0; a[-2] = 0; p[0] = 1; p[n_?Positive] := Prime[n]; a[n_] := a[n] = p[n] - a[n-1] - a[n-2]; Table[a[n], {n, 0, 60}] // Accumulate (* Jean-François Alcover, Jun 25 2013 *) Sort[Flatten[Accumulate/@Transpose[Partition[Join[{1},Prime[Range[61]]], 3]]]] (* Harvey P. Dale, Jul 24 2013 *)
Formula
a(n) = Sum_{m<=n, m=n (mod 3)} p_m, where p_m is the m-th prime; that is, a(3n+k) = p_(3n) + p_(3(n-1)) + p_(3(n-2)) + ... + p_k, for 0<=k<3, where a(0)=1 and the 0th prime is taken to be 1.
Comments