A073737 Sums of three successive terms form the odd primes.
1, 1, 1, 3, 3, 5, 5, 7, 7, 9, 13, 9, 15, 17, 11, 19, 23, 17, 21, 29, 21, 23, 35, 25, 29, 43, 29, 31, 47, 31, 35, 61, 35, 41, 63, 45, 43, 69, 51, 47, 75, 57, 49, 85, 59, 53, 87, 71, 65, 91, 73, 69, 97, 75, 79, 103, 81, 85, 105, 87, 89, 107, 97, 103, 111, 99, 107, 125, 105, 117
Offset: 1
Examples
At n=10, a(10) + a(9) + a(8) = 13 + 9 + 7 = 29 = p_10.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a073737 n = a073737_list !! (n-1) a073737_list = 1 : 1 : zipWith (-) a065091_list (zipWith (+) a073737_list $ tail a073737_list) -- Reinhard Zumkeller, Aug 14 2011
-
Mathematica
a[0] = 1; a[-1] = 0; a[-2] = 0; p[0] = 1; p[n_?Positive] := Prime[n]; a[n_] := a[n] = p[n] - a[n-1] - a[n-2]; Table[a[n], {n, 0, 69}] (* Jean-François Alcover, Sep 30 2011 *) nxt[{a_,b_,c_}]:={b,c,NextPrime[a+b+c]-(b+c)}; Transpose[NestList[nxt,{1,1,1},70]][[1]] (* Harvey P. Dale, Mar 15 2015 *)
Formula
a(n) + a(n-1) + a(n-2) = n-th prime, where a(0)=1, a(-1)=0, a(-2)=0 and the 0th prime is taken to be 1.