A073832 k between A001359(n) and A001359(n+1) such that A073830(k) is maximal.
4, 7, 13, 23, 37, 53, 67, 97, 103, 131, 139, 173, 181, 193, 223, 233, 263, 277, 307, 337, 409, 421, 457, 509, 563, 593, 613, 631, 653, 797, 811, 823, 853, 877, 1013, 1021, 1039, 1051, 1087, 1129, 1223, 1259, 1283, 1297, 1307, 1423, 1447, 1471, 1483, 1601
Offset: 1
Keywords
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..2600
Programs
-
Maple
A073832 := proc(n) local k,kmx,a ; kmx := 0 ; a := A001359(n)+1 ; for k from A001359(n)+1 to A001359(n+1)-1 do if A073830(k) > kmx then a := k ; kmx := A073830(k) ; end if; end do: a ; end proc: seq(A073832(n),n=1..50) ; # R. J. Mathar, Feb 21 2017
-
Mathematica
f[n_] := Mod[4*((n - 1)! + 1) + n, n*(n + 2)]; pp = Select[Prime[Range[300]], PrimeQ[# + 2] & ]; a[n_] := MaximalBy[Range[pp[[n]], pp[[n + 1]]], f]; Array[a, Length[pp] - 1] // Flatten (* Jean-François Alcover, Feb 22 2018 *)
-
Python
from math import factorial from itertools import islice, pairwise from sympy import isprime, nextprime, primerange def f(n): return (4*(factorial(n-1) + 1) + n)%(n*(n + 2)) def bgen(): # generator of A001359 p, q = 2, 3 while True: if q - p == 2: yield p p, q = q, nextprime(q) def agen(): # generator of terms for p, q in pairwise(bgen()): yield max((f(k), k) for k in range(p+1, q))[1] print(list(islice(agen(), 80))) # Michael S. Branicky, Aug 13 2024
Comments