cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A157625 Product of the composite numbers between n+1 and 2n, both inclusive.

Original entry on oeis.org

1, 4, 24, 48, 4320, 8640, 120960, 3628800, 7257600, 14515200, 6706022400, 13412044800, 8717829120000, 470762772480000, 941525544960000, 1883051089920000, 2112783322890240000, 147894832602316800000
Offset: 1

Views

Author

Jaume Oliver Lafont, Mar 03 2009

Keywords

Comments

This function is very useful in a problem due to Paul Erdős recorded in A157017. - M. F. Hasler, Feb 26 2014

Crossrefs

Cf. A073840, A157017, A144186 (product of primes between n+2 and 2n, both inclusive).

Programs

  • Mathematica
    nn=20;With[{comps=Complement[Range[2nn],Prime[Range[PrimePi[2nn]]]]}, Table[ Times@@ Select[comps,#>n&&#<=2n&],{n,nn}]] (* Harvey P. Dale, Feb 18 2013 *)
  • PARI
    a(n)=prod(i=n+1,2*n,if(isprime(i),1,i))

Formula

a(n) = n!*A000984(n)*A034386(n)/A034386(2n). - M. F. Hasler, Feb 26 2014

A073839 Sum of the composite numbers between n and 2n (both inclusive).

Original entry on oeis.org

0, 4, 10, 18, 33, 45, 53, 84, 94, 105, 138, 162, 201, 256, 272, 289, 340, 411, 431, 510, 532, 555, 624, 672, 747, 825, 853, 937, 1024, 1084, 1116, 1243, 1342, 1377, 1482, 1519, 1557, 1708, 1825, 1866, 1989, 2073, 2202, 2377, 2423, 2561, 2702, 2893, 2943
Offset: 1

Views

Author

Amarnath Murthy, Aug 13 2002

Keywords

Comments

a(n) is the sum of A075084(n) composite numbers (A002808). - Michel Marcus, Aug 26 2015

Examples

			a(6) = 6+8+9+10+12 = 45.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 150 do l := 0:for j from n to 2*n do if not isprime(j) then l := l+j:fi:od:a[n] := l:od:a[1] := 0:seq(a[j],j=1..150);
  • Mathematica
    cs[x_] := Flatten[Position[Table[PrimeQ[j], {j, x, 2*x}], False]]+x-1; sucs[x_] := Apply[Plus, cs[x]]; Table[sucs[w], {w, 1, 128}]
    Join[{0}, Table[Plus @@ Select[Range[n, 2 n], ! PrimeQ[#] &], {n, 2, 49}]] (* Jayanta Basu, Aug 12 2013 *)
  • PARI
    a(n) = my(s=0); forcomposite (c=n, 2*n, s+=c); s; \\ Michel Marcus, Aug 26 2015

Extensions

More terms from Sascha Kurz and Labos Elemer, Aug 14 2002
Showing 1-2 of 2 results.