A073901 Number of primes with nonzero digits and digit sum n.
0, 2, 1, 3, 7, 0, 29, 27, 0, 90, 234, 0, 753, 1025, 0, 3876, 9242, 0, 32549, 50112, 0, 180092, 420318, 0, 1525141, 2467286, 0, 9248093, 20668960, 0, 76318859, 130130794, 0, 487397935, 1066434006, 0
Offset: 1
Examples
a(2) = 2: the two primes are 2 and 11. a(5) = 7: the primes are 5, 41, 23, 113, 131, 311 and 2111.
Links
- Manfred Scheucher, Sage Script
- Rémy Sigrist, PARI program
Programs
-
Maple
S[1,1]:= [1]: for x from 2 to 9 do S[1,x]:= [] od: a[1]:= 0: a[2]:= 2: for n from 2 to 22 do for x from 2 to 9 do S[n,x]:= map(`+`,S[n-1,x-1],1) od: S[n,1]:= [seq(op(map(t -> 10*t+1, S[n-1,x])),x=1..9)]; if n > 3 and n mod 3 = 0 then a[n]:= 0 else if n > 5 then X:= [1,3,7,9] else X:= [$1..9] fi; a[n]:= add(numboccur(map(isprime,S[n,x]),true),x=X); fi od: seq(a[n],n=1..22); # Robert Israel, Jun 05 2015
-
Mathematica
f[n_] := If[ Mod[n, 3] == 0 && n > 3, 0, Block[{ip = IntegerPartitions@ n, lng = 1 + PartitionsP@ n, cnt = 0, k = 1}, While[k < lng, If[ Max@ ip[[k]] < 10, cnt += Length@ Select[ FromDigits@# & /@ Permutations@ ip[[k]], PrimeQ]]; k++]; cnt]]; Array[f, 30] (* Robert G. Wilson v, Jun 05 2015 *) DigitSum[n_, b_:10] := Total[IntegerDigits[n, b]];nextodd[c_] := If[ Length[c]==2, Join[ Table[1, {c[[1]]-2}], {c[[2]]+2}], Join[ Table[1, {c[[1]]-1}], {c[[2]]+1}, Drop[c, 2]]]; a[2]=2; a[n_] := If[Mod[n, 3]==0 && n>3, 0, Module[{c, ct}, For[ c = Table[1, {n}]; ct = 0, True, c = nextodd[c], If[ PrimeQ[ FromDigits[c]] && DigitSum[FromDigits[c]]==n, ct++ ]; If[ c[[ -1]] >= n-1, Return[ct]] ] ]]; Table[ a[n], {n, 20}]
-
PARI
See Links section.
-
Python
from collections import Counter from sympy.utilities.iterables import partitions, multiset_permutations from sympy import isprime def A073901(n): return sum(1 for p in partitions(n,k=9) for a in multiset_permutations(Counter(p).elements()) if isprime(int(''.join(str(d) for d in a)))) if n==3 or n%3 else 0 # Chai Wah Wu, Feb 21 2024
Extensions
Edited and extended by Robert G. Wilson v, Sep 19 2002
a(20) to a(24) and alternate Mathematica coding from Dean Hickerson, Sep 21 2002
a(25) from Robert G. Wilson v, Sep 26 2002
a(26)-a(31) from Robert G. Wilson v, Nov 14 2005
Corrected and edited by Manfred Scheucher, Jun 01 2015
a(32)-a(33) from Rémy Sigrist, Nov 17 2022
a(34)-a(36) from Michael S. Branicky, Jul 03 2023
Comments