cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A113625 Irregular triangle in which the n-th row contains all primes having digit sum n (not containing the digit '0') in increasing order.

Original entry on oeis.org

2, 11, 3, 13, 31, 211, 5, 23, 41, 113, 131, 311, 2111, 7, 43, 61, 151, 223, 241, 313, 331, 421, 1123, 1213, 1231, 1321, 2113, 2131, 2221, 2311, 3121, 4111, 11113, 11131, 11311, 12211, 21121, 21211, 22111, 111121, 111211, 112111, 17, 53, 71, 233, 251, 431, 521
Offset: 2

Views

Author

Amarnath Murthy, Nov 10 2005

Keywords

Comments

The number of primes in the n-th row is A073901(n). The smallest prime in the n-th row is A067180(n). The largest prime in the n-th row is A069869(n).

Examples

			Starting with row 2, the table is
2, 11
3
13, 31, 211
5, 23, 41, 113, 131, 311, 2111
none
7, 43, 61, 151, 223, 241, 313, 331, 421, 1123,...
		

Crossrefs

Cf. A110741 (with contraints on number of digits).

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, l) option remember; `if`(n=0, select(isprime,
          map(x-> parse(cat(x[])), permute(l))), `if`(i<1, [],
          [seq(b(n-i*j, i-1, [l[],i$j])[], j=0..n/i)]))
        end:
    T:= n-> sort(b(n, 9, []))[]:
    seq(T(n), n=2..8);  # Alois P. Heinz, May 25 2013
  • Mathematica
    Table[If[n > 3 && Mod[n, 3] == 0, {}, p = IntegerPartitions[n]; u = {}; Do[t = Permutations[i]; u = Union[u, Select[FromDigits /@ t, PrimeQ]], {i, p}]; u], {n, 2, 14}]

Extensions

Edited, corrected and extended by Stefan Steinerberger, Aug 10 2007
Edited by T. D. Noe, Jan 25 2011

A116381 Number of compositions of n which are prime when concatenated and read as a decimal string.

Original entry on oeis.org

0, 2, 1, 3, 7, 0, 29, 27, 0, 90, 236, 0, 758, 1039, 0, 3949, 9325, 0, 32907, 51243, 0, 184458, 426372, 0, 1552101, 2537233, 0, 9526385, 21117111, 0, 78112040, 134568638, 0, 505079269, 1096046406, 0
Offset: 1

Views

Author

Robert G. Wilson v, Feb 06 2006

Keywords

Examples

			The eight compositions of 4 are 4,13,31,22,112,121,211,1111 of which 3 {13,31,211} are primes.
Primes for n=11 are: 11, 29, 47, 83, 101, 137, 173, 191, 227, 263, 281, 317, 353, 443, 461, 641, 821, 911, 1163, 1181, ..., 131111111, 212111111, 1111111121, 1111211111, 1121111111.
		

Crossrefs

Cf. A069869, A069870; not the same as A073901.

Programs

  • Mathematica
    f[n_] := If[n > 5 && Mod[n, 3] == 0, 0, Block[{len = PartitionsP@ n, p = IntegerPartitions[n], c = 0}, Do[c = c + Length@ Select[ FromDigits /@ Join @@@ IntegerDigits /@ Permutations@ p[[i]], PrimeQ@# &], {i, len}]; c]]; Array[f, 28] (* Robert G. Wilson v, Aug 03 2012 *)
  • Python
    from sympy import isprime
    from sympy.utilities.iterables import partitions, multiset_permutations
    def a(n):
        c = 0
        for p in partitions(n):
            plst = [k for k in p for _ in range(p[k])]
            s = sum(sum(map(int, str(pi))) for pi in plst)
            if s != 3 and s%3 == 0: continue
            for m in multiset_permutations(plst):
                if isprime(int("".join(map(str, m)))):
                    c += 1
        return c
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Nov 19 2022
    
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions, multiset_permutations
    from sympy import isprime
    def A116381(n): return sum(1 for p in partitions(n) for a in multiset_permutations(Counter(p).elements()) if isprime(int(''.join(str(d) for d in a)))) if n==3 or n%3 else 0 # Chai Wah Wu, Feb 21 2024

Extensions

a(29)-a(33) from Michael S. Branicky, Nov 19 2022
a(34)-a(36) from Michael S. Branicky, Jul 10 2023
Showing 1-2 of 2 results.