A286499 Primes which divide a term of A073935.
2, 3, 5, 7, 17, 19, 43, 101, 163, 257, 487, 1459, 14407, 26407, 39367, 62501, 65537, 77659, 1020101, 1336337, 86093443, 242121643, 258280327, 3103616899, 4528177054183, 15258789062501, 411782264189299, 21108889701347407, 953735353027359375062501
Offset: 1
Keywords
A073934 Sum of terms in n-th row of triangle in A073932.
1, 3, 6, 7, 12, 12, 19, 15, 21, 22, 33, 24, 37, 33, 37, 31, 48, 39, 58, 42, 54, 55, 78, 48, 67, 63, 66, 61, 90, 67, 98, 63, 88, 82, 96, 75, 112, 96, 102, 82, 123, 96, 139, 99, 112, 124, 171, 96, 145, 117, 133, 115, 168, 120, 154, 117, 153, 148, 207, 127, 188, 160
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a[1] := 1:for i from 2 to 500 do n := i:s := n:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:s := s+n:od:a[i] := s:od:seq(a[k],k=1..500);
-
Mathematica
Array[If[# == 1, 1, Total@ NestWhileList[If[PrimeQ@ #, # - 1, # - #/FactorInteger[#][[1, 1]] ] &, #, # > 1 &]] &, 62]
-
Scheme
(define (A073934 n) (if (= 1 n) n (+ n (A073934 (A060681 n))))) (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742 ;; Antti Karttunen, Aug 23 2017
Formula
a(1) = 1; for n > 1, a(n) = n + a(A060681(n)). - Antti Karttunen, Aug 23 2017
Extensions
More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017
A073933 Number of terms in n-th row of triangle in A073932.
1, 2, 3, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 7, 7, 8, 7, 8, 6, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 9, 8, 8, 9, 10, 7, 9, 8, 8, 8, 9, 8, 9, 8, 9, 9, 10, 8, 9, 9, 9, 7, 9, 9, 10, 8, 10, 9, 10, 8, 9, 9, 9, 9, 10, 9, 10, 8, 9, 9, 10, 9, 9, 10, 10, 9, 10, 9, 10, 10, 10, 11, 10, 8
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a[1] := 1:for i from 2 to 500 do n := i:s := 1:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:s := s+1:od:a[i] := s:od:seq(a[k],k=1..500);
-
Scheme
(define (A073933 n) (if (= 1 n) n (+ 1 (A073933 (A060681 n))))) (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742 ;; Antti Karttunen, Aug 23 2017
Formula
From Antti Karttunen, Aug 23 2017: (Start)
a(1) = 1; for n > 1, a(n) = 1 + a(A060681(n)).
a(n) = 1 + A064097(n).
(End)
Extensions
More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017
A073932 Define f(n) = n - largest nontrivial divisor of n or f(n) = n-1 if n is a prime [that is, f(n) = A060681(n)]. Form a triangle in which the n-th row contains terms n, f(n), f(f(n)), ... until a 1 is reached; sequence gives triangle read by rows.
1, 2, 1, 3, 2, 1, 4, 2, 1, 5, 4, 2, 1, 6, 3, 2, 1, 7, 6, 3, 2, 1, 8, 4, 2, 1, 9, 6, 3, 2, 1, 10, 5, 4, 2, 1, 11, 10, 5, 4, 2, 1, 12, 6, 3, 2, 1, 13, 12, 6, 3, 2, 1, 14, 7, 6, 3, 2, 1, 15, 10, 5, 4, 2, 1, 16, 8, 4, 2, 1, 17, 16, 8, 4, 2, 1, 18, 9, 6, 3, 2, 1, 19, 18, 9, 6, 3, 2, 1, 20, 10, 5, 4, 2, 1
Offset: 1
Examples
Triangle begins: 1; 2, 1; 3, 2, 1; 4, 2, 1; 5, 4, 2, 1; 6, 3, 2, 1; 7, 6, 3, 2, 1; 8, 4, 2, 1; 9, 6, 3, 2, 1; 10, 5, 4, 2, 1;
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..12386 (rows 1 <= n <= 1000, flattened)
- John Machacek, Egyptian Fractions and Prime Power Divisors, Journal of Integer Sequences, Vol. 21 (2018), Article 18.3.7.
Programs
-
Maple
j := 1:a[1] := 1:for i from 2 to 50 do n := i:j := j+1:a[j] := n:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:j := j+1:a[j] := n: od:od:seq(a[k],k=1..j);
-
Mathematica
Array[If[# == 1, {1}, NestWhileList[If[PrimeQ@ #, # - 1, # - #/FactorInteger[#][[1, 1]] ] &, #, # > 1 &]] &, 20] // Flatten (* Michael De Vlieger, Apr 15 2020 *)
Extensions
More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017
A283423 Prime power pseudoperfect numbers: numbers m > 1 such that 1/m + Sum 1/p^k = 1, where the sum is over the prime powers p^k | m.
2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 64, 100, 128, 162, 256, 272, 294, 342, 486, 500, 512, 1024, 1458, 1806, 2048, 2058, 2500, 4096, 4374, 4624, 6498, 8192, 10100, 12500, 13122, 14406, 16384, 23994, 26406, 32768, 34362, 39366, 47058
Offset: 1
Keywords
Comments
Since primary pseudoperfect numbers (A054377) must be squarefree, it follows that primary pseudoperfect numbers are contained in this sequence.
This sequence contains all powers of 2. With the exception of the powers of 2, every prime power pseudoperfect number is a pseudoperfect number (A005835).
Every number in A073935 is a prime power pseudoperfect number (note: this sequence and A073935 agree for many terms but eventually differ starting at 23994 the 38th term of this sequence).
The number 2^k(2^k+1) is the sequence whenever 2^k+1 is a Fermat prime (A019434).
Examples
m = 18 is in the sequence because 1/18 + 1/2 + 1/3 + 1/9 = 1. m = 12 is NOT in the sequence because 1/12 + 1/2 + 1/4 + 1/3 != 1.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..131 (terms < 10^11, first 101 terms from Amiram Eldar)
- John Machacek, Egyptian Fractions and Prime Power Divisors, arXiv:1706.01008 [math.NT], 2017.
Programs
-
Mathematica
ok[n_] := Total[n/Flatten@ Table[e[[1]] ^ Range[e[[2]]], {e, FactorInteger[n]}]] + 1 == n; Select[ Range[10^5], ok] (* Giovanni Resta, May 27 2017 *)
A074093
Number of values of k such that n = k - largest divisor of k (
1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 1, 1
Offset: 1
Keywords
Examples
a(6) = 3 and the three values of k are 7,9 and 12.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000
Programs
-
Mathematica
f1[n_] := Count[Range[n, 2 n], ?(Differences[Take[Divisors[#], -2]] == {n} &)]; Join[{1}, Table[f1[n], {n, 2, 105}]] (* _Jayanta Basu, Jul 30 2013 *)
-
PARI
a(n)=sum(k=2,2*n,if(k- component(divisors(k),numdiv(k)-1)-n,0,1))
Formula
a(2n+1)=1; sum(k=1, n, a(k)) seems to be asymptotic to C*n with C=1.6... - Benoit Cloitre, Aug 21 2002
Extensions
More terms from Benoit Cloitre and Vladeta Jovovic, Aug 21 2002
Comments
Examples
Links
Crossrefs
Programs
Mathematica
Extensions