cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A286499 Primes which divide a term of A073935.

Original entry on oeis.org

2, 3, 5, 7, 17, 19, 43, 101, 163, 257, 487, 1459, 14407, 26407, 39367, 62501, 65537, 77659, 1020101, 1336337, 86093443, 242121643, 258280327, 3103616899, 4528177054183, 15258789062501, 411782264189299, 21108889701347407, 953735353027359375062501
Offset: 1

Views

Author

John Machacek, May 27 2017

Keywords

Comments

A prime p is in this sequence if and only if p-1 = Product_{i} (p_i)^(a_i) with p_j - 1 = Product_{j
This sequence contains all Fermat primes (A019434).

Examples

			p = 43 is in the sequence because 43-1 = 42 = 2*3*7, 7-1 = 6 = 2*3, 3-1 = 2.
		

Crossrefs

Cf. A073935.

Programs

  • Mathematica
    upTo[mx_] := Block[{ric}, ric[n_, p_] := If[n < mx, Block[{m = n p}, If[PrimeQ[n + 1], Sow[n+1]; ric[n (n + 1), n+1]]; If[IntegerExponent[n, p] == 1, While[m < mx, ric[m, p]; m *= p]]]]; Sort[Reap[ric[1, 2]][[2, 1]]]]; upTo[10^20] (* Giovanni Resta, May 27 2017 *)

Extensions

a(20)-a(29) from Giovanni Resta, May 27 2017

A073934 Sum of terms in n-th row of triangle in A073932.

Original entry on oeis.org

1, 3, 6, 7, 12, 12, 19, 15, 21, 22, 33, 24, 37, 33, 37, 31, 48, 39, 58, 42, 54, 55, 78, 48, 67, 63, 66, 61, 90, 67, 98, 63, 88, 82, 96, 75, 112, 96, 102, 82, 123, 96, 139, 99, 112, 124, 171, 96, 145, 117, 133, 115, 168, 120, 154, 117, 153, 148, 207, 127, 188, 160
Offset: 1

Author

Amarnath Murthy, Aug 19 2002

Keywords

Crossrefs

Programs

  • Maple
    a[1] := 1:for i from 2 to 500 do n := i:s := n:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:s := s+n:od:a[i] := s:od:seq(a[k],k=1..500);
  • Mathematica
    Array[If[# == 1, 1, Total@ NestWhileList[If[PrimeQ@ #, # - 1, # - #/FactorInteger[#][[1, 1]] ] &, #, # > 1 &]] &, 62]
  • Scheme
    (define (A073934 n) (if (= 1 n) n (+ n (A073934 (A060681 n)))))
    (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742
    ;; Antti Karttunen, Aug 23 2017

Formula

a(1) = 1; for n > 1, a(n) = n + a(A060681(n)). - Antti Karttunen, Aug 23 2017

Extensions

More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017

A073933 Number of terms in n-th row of triangle in A073932.

Original entry on oeis.org

1, 2, 3, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 7, 6, 7, 7, 8, 6, 7, 7, 7, 7, 8, 7, 8, 6, 8, 7, 8, 7, 8, 8, 8, 7, 8, 8, 9, 8, 8, 9, 10, 7, 9, 8, 8, 8, 9, 8, 9, 8, 9, 9, 10, 8, 9, 9, 9, 7, 9, 9, 10, 8, 10, 9, 10, 8, 9, 9, 9, 9, 10, 9, 10, 8, 9, 9, 10, 9, 9, 10, 10, 9, 10, 9, 10, 10, 10, 11, 10, 8
Offset: 1

Author

Amarnath Murthy, Aug 19 2002

Keywords

Crossrefs

One more than A064097.

Programs

  • Maple
    a[1] := 1:for i from 2 to 500 do n := i:s := 1:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:s := s+1:od:a[i] := s:od:seq(a[k],k=1..500);
  • Scheme
    (define (A073933 n) (if (= 1 n) n (+ 1 (A073933 (A060681 n)))))
    (define (A060681 n) (- n (A032742 n))) ;; See also code under A032742
    ;; Antti Karttunen, Aug 23 2017

Formula

From Antti Karttunen, Aug 23 2017: (Start)
a(1) = 1; for n > 1, a(n) = 1 + a(A060681(n)).
a(n) = 1 + A064097(n).
(End)

Extensions

More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017

A073932 Define f(n) = n - largest nontrivial divisor of n or f(n) = n-1 if n is a prime [that is, f(n) = A060681(n)]. Form a triangle in which the n-th row contains terms n, f(n), f(f(n)), ... until a 1 is reached; sequence gives triangle read by rows.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 2, 1, 5, 4, 2, 1, 6, 3, 2, 1, 7, 6, 3, 2, 1, 8, 4, 2, 1, 9, 6, 3, 2, 1, 10, 5, 4, 2, 1, 11, 10, 5, 4, 2, 1, 12, 6, 3, 2, 1, 13, 12, 6, 3, 2, 1, 14, 7, 6, 3, 2, 1, 15, 10, 5, 4, 2, 1, 16, 8, 4, 2, 1, 17, 16, 8, 4, 2, 1, 18, 9, 6, 3, 2, 1, 19, 18, 9, 6, 3, 2, 1, 20, 10, 5, 4, 2, 1
Offset: 1

Author

Amarnath Murthy, Aug 19 2002

Keywords

Examples

			Triangle begins:
   1;
   2, 1;
   3, 2, 1;
   4, 2, 1;
   5, 4, 2, 1;
   6, 3, 2, 1;
   7, 6, 3, 2, 1;
   8, 4, 2, 1;
   9, 6, 3, 2, 1;
  10, 5, 4, 2, 1;
		

Crossrefs

Programs

  • Maple
    j := 1:a[1] := 1:for i from 2 to 50 do n := i:j := j+1:a[j] := n:while(n>1) do if isprime(n) then r := n-1: else r := n-n/ifactors(n)[2][1][1]; fi; n := r:j := j+1:a[j] := n: od:od:seq(a[k],k=1..j);
  • Mathematica
    Array[If[# == 1, {1}, NestWhileList[If[PrimeQ@ #, # - 1, # - #/FactorInteger[#][[1, 1]] ] &, #, # > 1 &]] &, 20] // Flatten  (* Michael De Vlieger, Apr 15 2020 *)

Extensions

More terms from Sascha Kurz, Aug 23 2002
Offset corrected from 0 to 1 by Antti Karttunen, Aug 23 2017

A283423 Prime power pseudoperfect numbers: numbers m > 1 such that 1/m + Sum 1/p^k = 1, where the sum is over the prime powers p^k | m.

Original entry on oeis.org

2, 4, 6, 8, 16, 18, 20, 32, 42, 54, 64, 100, 128, 162, 256, 272, 294, 342, 486, 500, 512, 1024, 1458, 1806, 2048, 2058, 2500, 4096, 4374, 4624, 6498, 8192, 10100, 12500, 13122, 14406, 16384, 23994, 26406, 32768, 34362, 39366, 47058
Offset: 1

Author

John Machacek, May 27 2017

Keywords

Comments

Since primary pseudoperfect numbers (A054377) must be squarefree, it follows that primary pseudoperfect numbers are contained in this sequence.
This sequence contains all powers of 2. With the exception of the powers of 2, every prime power pseudoperfect number is a pseudoperfect number (A005835).
Every number in A073935 is a prime power pseudoperfect number (note: this sequence and A073935 agree for many terms but eventually differ starting at 23994 the 38th term of this sequence).
The number 2^k(2^k+1) is the sequence whenever 2^k+1 is a Fermat prime (A019434).

Examples

			m = 18 is in the sequence because 1/18 + 1/2 + 1/3 + 1/9 = 1.
m = 12 is NOT in the sequence because 1/12 + 1/2 + 1/4 + 1/3 != 1.
		

Crossrefs

Programs

  • Mathematica
    ok[n_] := Total[n/Flatten@ Table[e[[1]] ^ Range[e[[2]]], {e, FactorInteger[n]}]] + 1 == n; Select[ Range[10^5], ok] (* Giovanni Resta, May 27 2017 *)

A074093 Number of values of k such that n = k - largest divisor of k (

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 1, 1, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 4, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 4, 1, 1, 1
Offset: 1

Author

Amarnath Murthy, Aug 19 2002

Keywords

Examples

			a(6) = 3 and the three values of k are 7,9 and 12.
		

Crossrefs

Programs

Formula

a(2n+1)=1; sum(k=1, n, a(k)) seems to be asymptotic to C*n with C=1.6... - Benoit Cloitre, Aug 21 2002

Extensions

More terms from Benoit Cloitre and Vladeta Jovovic, Aug 21 2002
Showing 1-6 of 6 results.