A074036 Sum of the primes from the smallest prime factor of n to the largest prime factor of n.
0, 2, 3, 2, 5, 5, 7, 2, 3, 10, 11, 5, 13, 17, 8, 2, 17, 5, 19, 10, 15, 28, 23, 5, 5, 41, 3, 17, 29, 10, 31, 2, 26, 58, 12, 5, 37, 77, 39, 10, 41, 17, 43, 28, 8, 100, 47, 5, 7, 10, 56, 41, 53, 5, 23, 17, 75, 129, 59, 10, 61, 160, 15, 2, 36, 28, 67, 58, 98, 17, 71, 5, 73, 197, 8
Offset: 1
Examples
a(14) = 17 because 14 = 2 * 7 and 2 + 3 + 5 + 7 = 17.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
- Erich Friedman, What's Special About This Number? Entry for 155.
Programs
-
Maple
f:=proc(n) local i,t1,t2,t3,t4,t5,t6; if n<=1 then RETURN(0) else t1:=ifactors(n); t2:=t1[2]; t3:=nops(t2); t4:=0; t5:=pi(t2[1][1]); t6:=pi(t2[t3][1]); for i from t5 to t6 do t4:=t4+ithprime(i); od; RETURN(t4); fi; end; # N. J. A. Sloane, May 24 2010 # second Maple program: s:= proc(n) option remember; `if`(n<1, 0, ithprime(n)+s(n-1)) end: a:= proc(n) option remember; uses numtheory; `if`(n<2, 0, (m-> s(pi(max(m)))-s(pi(min(m))-1))(factorset(n))) end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 24 2021
-
Mathematica
sp[n_]:=With[{fi=FactorInteger[n][[All,1]]},Total[Prime[Range[ PrimePi[ fi[[1]]],PrimePi[fi[[-1]]]]]]]; Join[{0},Array[sp,80,2]] (* Harvey P. Dale, Dec 22 2017 *)
-
PARI
a(n) = if (n==1, 0, my(f = factor(n), s = 0); forprime(p=f[1,1], f[#f~,1], s += p); s); \\ Michel Marcus, May 31 2017
Formula
Given p prime and k > 0, a(p^k) = p. - Alonso del Arte, May 30 2017
Comments