cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074063 a(n) is the number of essentially different ways in which the integers 1,2,3,...,n can be arranged in a sequence such that (1) adjacent integers sum to a prime number and (2) squares of adjacent numbers sum to a prime number. Rotations and reversals are counted only once.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1481, 4266, 0, 0, 5624, 0
Offset: 1

Views

Author

T. D. Noe, Aug 17 2002

Keywords

Comments

It is known that a(n) > 0 for 58 <= n <= 200. It is conjectured that a(n) > 0 for all n > 57. A greedy algorithm can be used to quickly find a solution for many n. See the link to puzzle 189 for more details. The Mathematica program uses a backtracking algorithm to count the arrangements. To print the unique arrangements, remove the comments from around the print statement.
a(58) > 2.65*10^6; a(59) > 4.45*10^6. - Alexander D. Healy, Apr 07 2025

Examples

			a(4)=1 because there is essentially one arrangement: {3,2,1,4}.
		

Crossrefs

Programs

  • Mathematica
    nMax=12; $RecursionLimit=500; try[lev_] := Module[{t, j, circular}, If[lev>n, circular=PrimeQ[soln[[1]]^2+soln[[n]]^2]&&PrimeQ[soln[[1]]+soln[[n]]]; If[(!circular&&soln[[1]]
    				

Extensions

a(52)-a(57) from Alexander D. Healy, Apr 01 2025