A074063 a(n) is the number of essentially different ways in which the integers 1,2,3,...,n can be arranged in a sequence such that (1) adjacent integers sum to a prime number and (2) squares of adjacent numbers sum to a prime number. Rotations and reversals are counted only once.
1, 1, 1, 1, 0, 1, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1481, 4266, 0, 0, 5624, 0
Offset: 1
Examples
a(4)=1 because there is essentially one arrangement: {3,2,1,4}.
Links
- Carlos Rivera, Puzzle 189: Squares and primes in a row, The Prime Puzzles & Problems Connection.
Programs
-
Mathematica
nMax=12; $RecursionLimit=500; try[lev_] := Module[{t, j, circular}, If[lev>n, circular=PrimeQ[soln[[1]]^2+soln[[n]]^2]&&PrimeQ[soln[[1]]+soln[[n]]]; If[(!circular&&soln[[1]]
Extensions
a(52)-a(57) from Alexander D. Healy, Apr 01 2025
Comments