cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074092 Number of plane binary trees of size n+3 and contracted height n.

Original entry on oeis.org

1, 2, 8, 40, 144, 448, 1280, 3456, 8960, 22528, 55296, 133120, 315392, 737280, 1703936, 3899392, 8847360, 19922944, 44564480, 99090432, 219152384, 482344960, 1056964608, 2306867200, 5016387584, 10871635968, 23488102400
Offset: 0

Views

Author

Antti Karttunen, Aug 19 2002

Keywords

Crossrefs

Programs

  • Maple
    A074092 := n -> `if`((n < 2),n+1,2^(n-1)*(n+2)*(n-1));
    A074092v2 := n -> `if`((n < 2),n+1,(2^n)*(binomial(n,n-2)+binomial(n-1,n-2)));
  • Mathematica
    Table[If[n < 2, n + 1, 2^(n - 1)*(n + 2) (n - 1)], {n, 0, 26}] (* or *)
    CoefficientList[Series[(1 - 4 x + 8 x^2 + 8 x^3 - 16 x^4)/(1 - 2 x)^3, {x, 0, 26}], x] (* Michael De Vlieger, Sep 22 2017 *)
    LinearRecurrence[{6,-12,8},{1,2,8,40,144},30] (* Harvey P. Dale, Jun 20 2021 *)
  • PARI
    Vec((1-4*x+8*x^2+8*x^3-16*x^4)/(1-2*x)^3+O(x^99)) \\ Charles R Greathouse IV, Mar 21 2012

Formula

a(n) = A073346(n+3, n).
a(0) = 1, a(1) = 2, a(n) = 2^(n-1)*(n+2)*(n-1) = (2^n)*(C(n, n-2)+C(n-1, n-2)) = 2^n * A000096(n-1).
a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>4. G.f.: (1-4*x+8*x^2+8*x^3-16*x^4)/(1-2*x)^3. [Colin Barker, Mar 21 2012]
For n>1, a(n) = (1/2) * Sum_{k=0..n+1} Sum_{i=0..n+1} (k-1) * C(n+1,i). - Wesley Ivan Hurt, Sep 20 2017