A074232 Positive numbers that are not 3 or 6 (mod 9).
1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 14, 16, 17, 18, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 55, 56, 58, 59, 61, 62, 63, 64, 65, 67, 68, 70, 71, 72, 73, 74, 76, 77, 79, 80, 81, 82, 83, 85, 86, 88, 89, 90, 91
Offset: 1
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12000
- R. D. Carmichael, On the representation of numbers in the form x^3+y^3+z^3-3xyz, Bull. Amer. Math. Soc. 22 (1915), 111-117.
- Vladimir Shevelev, Representation of positive integers by the form x^3+y^3+z^3-3xyz, arXiv:1508.05748 [math.NT], 2015.
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Crossrefs
Programs
-
Mathematica
Select[Range@ 91, ! Xor[Mod[#, 3] == 0, Mod[#, 9] == 0] &] (* or *) Select[Range@ 91, KroneckerSymbol[#, 9] == MoebiusMu[GCD[#, 9]] &] (* Michael De Vlieger, Sep 07 2015 *)
-
PARI
lista(nn) = for (n=1, nn, if (kronecker(9,n)==moebius(gcd(9,n)) , print1(n, ", "))); \\ Michel Marcus, Aug 12 2015
-
PARI
is(n)=valuation(n,3)!=1 \\ Charles R Greathouse IV, Aug 12 2015
Formula
G.f.: x*(x^2-x+1)*(1+x+x^2)^2 / ( (x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2 ). - R. J. Mathar, Apr 28 2016
Extensions
Offset corrected by Michel Marcus, Aug 12 2015
Definition edited by N. J. A. Sloane, Aug 25 2015
Better name from Vladimir Shevelev, Aug 12 2015
Comments