cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074246 Triangle of coefficients, read by rows, where the n-th row forms the polynomial P(n,x) = {Sum_{k=1..n} 1/(k+x)}*{Product_{k=1..n} (k+x)}.

Original entry on oeis.org

1, 3, 2, 11, 12, 3, 50, 70, 30, 4, 274, 450, 255, 60, 5, 1764, 3248, 2205, 700, 105, 6, 13068, 26264, 20307, 7840, 1610, 168, 7, 109584, 236248, 201852, 89796, 22680, 3276, 252, 8, 1026576, 2345400, 2171040, 1077300, 316365, 56700, 6090, 360, 9
Offset: 1

Views

Author

Paul D. Hanna, Sep 19 2002

Keywords

Comments

The n-th row polynomial, P(n,x), has ordered zeros {z_k < z_(k+1), 0
The higher-order exponential integrals E(x,m,n) are defined in A163931 and the asymptotic expansion of E(x,m=2,n) can be found in A028421. We determined with the latter that E(x,m=2,n+1) = (exp(-x)/x^2)*(1 - (3+2*n)/x + (11+12*n+3*n^2)/x^2 - (50+70*n+30*n^2+ 4*n^3)/x^3 + .... ). The polynomial coefficients in the numerators lead to the coefficients of the triangle given above. The numerators of the o.g.f.s of the right hand columns of this triangle lead for z = 1 to A001147. - Johannes W. Meijer, Oct 16 2009

Examples

			Polynomials begin:
P(1,x) = 1,
P(2,x) = 3 + 2x,
P(3,x) = 11 + 12x + 3x^2,
P(4,x) = 50 + 70x + 30x^2 + 4x^3,
P(5,x) = 274 + 450x + 255x^2 + 60x^3 + 5x^4,
P(6,x) = 1764 + 3248x + 2205x^2 + 700x^3 + 105x^4 + 6x^5,
P(7,x) = 13068 + 26264x + 20307x^2 + 7840x^3 + 1610x^4 + 168x^5 + 7x^6,
P(8,x) = 109584 + 236248x + 201852x^2 + 89796x^3 + 22680x^4 + 3276x^5 + 252x^6 + 8x^7,
P(9,x) = 1026576 + 2345400x + 2171040x^2 + 1077300x^3 + 316365x^4 + 56700x^5 + 6090x^6 + 360x^7 + 9x^8,
P(10,x) = 10628640 + 25507152x + 25228500x^2 + 13667720x^3 + 4510275x^4 + 946638x^5 + 127050x^6 + 10560x^7 + 495x^8 + 10x^9, ...
		

Crossrefs

See references and formulas at A000254, A001705. Cf. A028421.
A027480 is the second right hand column. - Johannes W. Meijer, Oct 16 2009

Programs

  • Maple
    with(combinat): A074246 := proc(n,m): (-1)^(n+m)*binomial(m,1)*stirling1(n+1,m+1) end: seq(seq(A074246(n,m),m=1..n),n=1..9); # Johannes W. Meijer, Oct 16 2009, Revised Sep 09 2012
  • Mathematica
    p[n_, x_] := Sum[1/(k+x), {k, 1, n}] Product[k+x, {k, 1, n}] ; Flatten[Table[ CoefficientList[ p[n, x] // Simplify[#, ComplexityFunction -> Length] &, x], {n, 1, 9}]] (* Jean-François Alcover, May 04 2011 *)
  • PARI
    P(n) = Vecrev(sum(k=1, n, prod(k=1, n, (k+x))/(k+x)));
    for (n=1, 10, print(P(n))) \\ Michel Marcus, Jan 22 2017

Formula

First column is A000254 (Stirling numbers of first kind s(n, 2): a(n+1)=(n+1)*a(n)+n!), while sum of rows is A001705 (generalized Stirling numbers). Also related to Harmonic numbers: P(n, 0)=n!*H(n), H(n)=harmonic number.
T(n,k) = (-1)^(n+k)*k*Stirling1(n+1,k+1). - Johannes W. Meijer, Oct 16 2009
E.g.f.: 1/(1 - z)^(x+1)*log(1/(1 - z)). Cf. A028421. - Peter Bala, Jan 06 2015