cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074331 a(n) = Fibonacci(n+1) - (1 + (-1)^n)/2.

Original entry on oeis.org

0, 1, 1, 3, 4, 8, 12, 21, 33, 55, 88, 144, 232, 377, 609, 987, 1596, 2584, 4180, 6765, 10945, 17711, 28656, 46368, 75024, 121393, 196417, 317811, 514228, 832040, 1346268, 2178309, 3524577, 5702887, 9227464, 14930352, 24157816, 39088169
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 21 2002

Keywords

Comments

a(n) is the convolution of F(n) with the sequence (1,0,1,0,1,0,...).
Transform of F(n) under the Riordan array (1/(1-x^2), x). - Paul Barry, Apr 16 2005

Crossrefs

Essentially the same as A052952.
Cf. A000045.

Programs

  • Magma
    [Fibonacci(n+1) - (1+(-1)^n)/2: n in [0..40]]; // G. C. Greubel, Jun 23 2022
    
  • Maple
    with(combinat):seq(fibonacci(n+1)-(1+(-1)^n)/2, n=0..40); # Zerinvary Lajos, Mar 17 2008
  • Mathematica
    CoefficientList[Series[x/(1-x-2*x^2+x^3+x^4), {x, 0, 40}], x]
    Table[Floor[GoldenRatio^(k+1)/Sqrt[5]], {k, 0, 40}] (* Federico Provvedi, Mar 26 2013 *)
  • PARI
    a(n)=if(n<0,0,fibonacci(n+1)-(n+1)%2)
    
  • SageMath
    [fibonacci(n+1) -((n+1)%2) for n in (0..40)] # G. C. Greubel, Jun 23 2022

Formula

a(n) = Sum_{i=0..floor(n/2)} Fibonacci(2*i + e), where e = 2*(n/2 - floor(n/2)).
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n > 3, a(0)=0, a(1)=1, a(2)=1, a(3)=3.
G.f.: x / ( (1-x)*(1+x)*(1-x-x^2) ).
a(2*n+1) = Fibonacci(2*n+2).
a(2*n) = Fibonacci(2*n+1) - 1.
a(n-1) = Sum_{k=0..floor(n/2)} binomial(n-k, k-1). - Paul Barry, Jul 07 2004
a(n) = Sum_{k=0..floor((n-1)/2)} Fibonacci(n-2*k). - Paul Barry, Apr 16 2005
a(n) = Sum_{k=0..n} Fibonacci(k)*(1-(-1)^floor((n+k-1)/2)). - Paul Barry, Apr 16 2005
a(n) = Fibonacci(n) + a(n-2) for n > 1. - Zerinvary Lajos, Mar 17 2008
a(n) = floor(g^(n+1)/sqrt(5)), where g = (sqrt(5) + 1)/2. - Federico Provvedi, Mar 27 2013
E.g.f.: exp(x/2)*(cosh(sqrt(5)*x/2) + (1/sqrt(5))*sinh(sqrt(5)*x/2)) - cosh(x). - G. C. Greubel, Jun 23 2022