A074374 a(n) = sopfr(n)*(sopfr(n)+1)/2 where sopfr is the sum of the prime factors of n with repetition (A001414).
0, 0, 3, 6, 10, 15, 15, 28, 21, 21, 28, 66, 28, 91, 45, 36, 36, 153, 36, 190, 45, 55, 91, 276, 45, 55, 120, 45, 66, 435, 55, 496, 55, 105, 190, 78, 55, 703, 231, 136, 66, 861, 78, 946, 120, 66, 325, 1128, 66, 105, 78, 210, 153, 1431, 66, 136, 91, 253, 496, 1770, 78
Offset: 0
Examples
a(10) = 7(7+1)/2 = 28 because 7 is the sum of the prime factors of 10.
Links
- Neville Holmes, Integer Sequence Combinations
Programs
-
Mathematica
f[n_]:=Module[{c=Total[Times@@@FactorInteger[n]]},(c(c+1))/2]; Join[{0,0}, Array[f,60,2]] (* Harvey P. Dale, Aug 21 2011 *)
-
PARI
s(n)=sum(i=1,omega(n), component(component(factor(n),1),i)*component(component(factor(n),2),i)) a(n)=s(n)*(s(n)+1)/2
Extensions
More terms from Benoit Cloitre, Sep 02 2002