A074394 a(n) = a(n-1)*a(n-2) - a(n-3) with a(1) = 1, a(2) = 2, and a(3) = 3.
1, 2, 3, 5, 13, 62, 801, 49649, 39768787, 1974480504962, 78522694637486171445, 155041529758800625329015665441303, 12174278697379026530632791354719900462885271361687873
Offset: 1
Keywords
Examples
a(6) = a(5)*a(4) - a(3) = 13*5 - 3 = 62.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..19
Programs
-
Haskell
a074394 n = a074394_list !! (n-1) a074394_list = 1 : 2 : 3 : zipWith (-) (tail $ zipWith (*) (tail a074394_list) a074394_list) a074394_list -- Reinhard Zumkeller, Mar 25 2015
-
Mathematica
nxt[{a_,b_,c_}]:={b,c,b*c-a}; NestList[nxt,{1,2,3},15][[All,1]] (* Harvey P. Dale, Jan 21 2023 *)
Formula
Lim_{n->infinity} a(n+1)/a(n)^phi = 1, where phi is the golden ratio (1+sqrt(5))/2 = A001622. - Benoit Cloitre, Sep 26 2002
From Jon E. Schoenfield, May 13 2019: (Start)
It appears that, for n >= 2,
a(n) = ceiling(e^(c*phi^n - d/(-phi)^n))
where
phi = (1 + sqrt(5))/2
c = 0.230193077518834725477008740044380256486365499661...
d = 0.067704372842879037264190305626317036100889750046...
(End)
Comments