A074483 Consider the recursion b(1,n) = 1, b(k+1,n) = b(k,n) + (b(k,n) reduced mod(k+n)); then there is a number y such that b(k,n)-b(k-1,n) is a constant (= A074482(n)) for k > y. Sequence gives values of y.
397, 396, 395, 4, 11, 10, 25, 24, 29, 14, 5, 26, 25, 10, 7, 16, 68265, 14, 13, 12, 17, 1220, 67, 136, 93, 6, 133, 132, 9, 272, 129, 14, 1209, 126, 125, 124, 48605, 48604, 269393, 269392, 292695, 180, 77, 178, 177, 269386, 24017, 72, 24015, 172, 67, 44, 11, 16, 65
Offset: 0
Keywords
Examples
A074482(0) = A073117(a(0)) mod a(0) = A073117(397) mod 397 = 38606 mod 397 = 97.
Links
- David W. Wilson, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A073117.
Comments