cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074482 Consider the recursion b(1,n) = 1, b(k+1,n) = b(k,n) + (b(k,n) reduced mod(k+n)); then there is a number x such that b(k,n) - b(k-1,n) is a constant x depending only on n, for k > y = A074483(n). Sequence gives values of x.

Original entry on oeis.org

97, 97, 97, 1, 3, 3, 6, 6, 8, 4, 1, 8, 8, 3, 2, 5, 17143, 5, 3, 4, 5, 316, 22, 41, 28, 1, 41, 41, 3, 74, 39, 5, 316, 37, 37, 37, 12178, 12178, 67382, 67382, 73191, 52, 25, 51, 50, 67382, 6001, 25, 6001, 51, 22, 17, 2, 5, 23, 50, 1, 50, 50, 14, 50, 492, 20, 50, 20, 52, 17, 17143
Offset: 0

Views

Author

Keywords

Comments

Conjecture: a(n) is defined for all n (as well as A074483);
A074484(n) = a(n)*(A074483(n)+ n + 1);
b(k, n) = a(n)*(k + n + 1) for k > A074483(n).

Examples

			a(0) = A073117(A074483(0)) mod A074483(0) = A073117(397) mod 397 = 38606 mod 397 = 97.
		

Crossrefs

Cf. A073117.

A074484 a(n) = b(A074483(n), n), where b(k) is the recursion: b(1,n)=1, b(k+1,n)=b(k,n) + (b(k,n) reduced mod(k+n)) (cf. A074482).

Original entry on oeis.org

38606, 38606, 38606, 8, 48, 48, 192, 192, 304, 96, 16, 304, 304, 72, 44, 160, 1170558326, 160, 96, 128, 190, 392472, 1980, 6560, 3304, 32, 6560, 6560, 114, 22348, 6240, 230, 392472, 5920, 5920, 5920, 592362276, 592362276, 18154867024, 18154867024
Offset: 0

Views

Author

Keywords

Comments

a(n) = A074482(n)*(A074483(n)+ n + 1).

Examples

			a(0) = A073117(A074483(0)) = A073117(397) = 38606.
		

Crossrefs

Showing 1-2 of 2 results.