A074482 Consider the recursion b(1,n) = 1, b(k+1,n) = b(k,n) + (b(k,n) reduced mod(k+n)); then there is a number x such that b(k,n) - b(k-1,n) is a constant x depending only on n, for k > y = A074483(n). Sequence gives values of x.
97, 97, 97, 1, 3, 3, 6, 6, 8, 4, 1, 8, 8, 3, 2, 5, 17143, 5, 3, 4, 5, 316, 22, 41, 28, 1, 41, 41, 3, 74, 39, 5, 316, 37, 37, 37, 12178, 12178, 67382, 67382, 73191, 52, 25, 51, 50, 67382, 6001, 25, 6001, 51, 22, 17, 2, 5, 23, 50, 1, 50, 50, 14, 50, 492, 20, 50, 20, 52, 17, 17143
Offset: 0
Keywords
Examples
a(0) = A073117(A074483(0)) mod A074483(0) = A073117(397) mod 397 = 38606 mod 397 = 97.
Links
- David W. Wilson, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A073117.
Comments