A074552 a(n) = 3^n + 5^n + 7^n.
3, 15, 83, 495, 3107, 20175, 134003, 903855, 6161987, 42326415, 292299923, 2026332015, 14085959267, 98111307855, 684331371443, 4778093436975, 33385561506947, 233393582580495, 1632228682596563, 11417969833962735
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (15,-71,105).
Programs
-
Magma
[3^n + 5^n + 7^n: n in [0..30]]; // Vincenzo Librandi, Jun 13 2011
-
Mathematica
Table[3^n + 5^n + 7^n, {n, 0, 20}] LinearRecurrence[{15,-71,105},{3,15,83},20] (* Harvey P. Dale, Jul 16 2020 *)
Formula
From Mohammad K. Azarian, Dec 30 2008: (Start)
G.f.: 1/(1-3*x) + 1/(1-5*x) + 1/(1-7*x).
E.g.f.: exp(3*x) + exp(5*x) + exp(7*x). (End)
a(n) = 15*a(n-1) - 71*a(n-2) + 105*a(n-3).