cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074583 Numbers k such that sopfr(k) = S(k), where sopfr = A001414 and S = A002034.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239
Offset: 1

Views

Author

Jason Earls, Aug 24 2002

Keywords

Comments

These are the prime powers p^e with e <= p. - Reinhard Zumkeller, Dec 15 2003
Complement to A192135 with respect to A000961;

Crossrefs

Subsequence of A000961; A000040, A000430, and A051674 are subsequences.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a074583 n = a074583_list !! (n-1)
    a074583_list = 1 : f (singleton 2) a000040_list where
      f s ps'@(p:p':ps)
        | m == p      = p : f (insert (p*p) $ insert p' s') (p':ps)
        | m < spf^spf = m : f (insert (m*spf) s') ps'
        | otherwise   = m : f s' ps'
          where spf = a020639 m  -- smallest prime factor of m, cf. A020639
                (m, s') = deleteFindMin s
    -- Simpler version:
    a074583_list = map a000961 a192188_list
    -- Reinhard Zumkeller, Jun 05 2011, Jun 26 2011
    
  • Mathematica
    sopfr[n_] := Total[Times @@@ FactorInteger[n]];
    S[n_] := Module[{m = 1}, While[!IntegerQ[m!/n], m++]; m];
    Select[Range[1000], sopfr[#] == S[#]&] (* Jean-François Alcover, Nov 09 2017 *)
  • PARI
    isok(n) = my(f=factor(n)); n==1 || (#f~==1 && f[1, 1]>=f[1, 2]); \\ Seiichi Manyama, May 07 2021

Formula

a(n) = A000961(A192188(n)); A095874(a(n)) = A192188(n). - Reinhard Zumkeller, Jun 26 2011