cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A155590 a(n) = 7^n + 2^n - 1.

Original entry on oeis.org

1, 8, 52, 350, 2416, 16838, 117712, 823670, 5765056, 40354118, 282476272, 1977328790, 13841291296, 96889018598, 678223089232, 4747561542710, 33232930635136, 232630514118278, 1628413598172592, 11398895185897430, 79792266298660576, 558545864085381158, 3909821048587182352
Offset: 0

Views

Author

Mohammad K. Azarian, Jan 24 2009

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1-7*x)+1/(1-2*x)-1/(1-x).
E.g.f.: exp(7*x)+exp(2*x)-exp(x).
a(n) = 9*a(n-1)-14*a(n-2)-6 with a(0) = 1, a(1) = 8. - Vincenzo Librandi, Jul 21 2010
a(n) = A074602(n)-1. - R. J. Mathar, Mar 10 2022

A176946 Primes of the form 7^k+2^k.

Original entry on oeis.org

2, 53, 2417
Offset: 1

Views

Author

Vincenzo Librandi, Apr 29 2010

Keywords

Comments

If 7^k+2^k is prime then k is either 0 or a power of 2. The corresponding values of k for a(1)-a(3) are 0, 2 and 4. If it exists, a(4) has k = 2^m with m > 19, and therefore it is larger than 7^(2^20) > 10^886149. - Amiram Eldar, Jul 17 2025

Crossrefs

Primes in A074602.

Programs

  • Magma
    [ a: k in [0..2100] | IsPrime(a) where a is 7^k+2^k ];

A245807 a(n) = 7^n + 10^n.

Original entry on oeis.org

2, 17, 149, 1343, 12401, 116807, 1117649, 10823543, 105764801, 1040353607, 10282475249, 101977326743, 1013841287201, 10096889010407, 100678223072849, 1004747561509943, 10033232930569601, 100232630513987207, 1001628413597910449, 10011398895185373143
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 7^n+k^n: A034491 (k=1), A074602 (k=2), A074608 (k=3), A074613 (k=4), A074616 (k=5), A074619 (k=6), A109808 (k=7), A074622 (k=8), A074623 (k=9), this sequence (k=10).

Programs

  • Magma
    [7^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,17]; [n le 2 select I[n] else 17*Self(n-1)-70*Self(n-2): n in [1..25]];
  • Mathematica
    Table[(7^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 17 x)/((1 - 7 x) (1 - 10 x)), {x, 0, 40}], x]

Formula

G.f.: (2-17*x)/((1-7*x)*(1-10*x)).
E.g.f.: e^(7*x) + e^(10*x).
a(n) = 17*a(n-1)-70*a(n-2).
a(n) = A000420(n) + A011557(n).

A045580 Numbers k that divide 7^k + 2^k.

Original entry on oeis.org

1, 3, 9, 27, 39, 81, 117, 171, 243, 351, 507, 513, 729, 1053, 1521, 1539, 2187, 2223, 3081, 3159, 3249, 4563, 4617, 5109, 6123, 6561, 6591, 6669, 9243, 9477, 9747, 13689, 13851, 15327, 18153, 18369, 19683, 19773, 20007, 27729, 28431, 28899, 29241, 39159, 40053
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074602.

Programs

  • Mathematica
    Select[Range[30000], Divisible[PowerMod[2, #, #] + PowerMod[7, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)
Showing 1-4 of 4 results.