cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A245806 a(n) = 3^n + 10^n.

Original entry on oeis.org

2, 13, 109, 1027, 10081, 100243, 1000729, 10002187, 100006561, 1000019683, 10000059049, 100000177147, 1000000531441, 10000001594323, 100000004782969, 1000000014348907, 10000000043046721, 100000000129140163, 1000000000387420489, 10000000001162261467
Offset: 0

Views

Author

Vincenzo Librandi, Aug 04 2014

Keywords

Crossrefs

Cf. 3^n+k^n: A034472 (k=1), A007689 (k=2), A008776 (k=3), A074605 (k=4), A074606 (k=5), A074607 (k=6), A074608 (k=7), A074609 (k=8), A074610 (k=9), this sequence (k=10).

Programs

  • Magma
    [3^n+10^n: n in [0..25]];
    
  • Magma
    I:=[2,13]; [n le 2 select I[n] else 13*Self(n-1)-30*Self(n-2): n in [1..25]];
    
  • Mathematica
    Table[(3^n + 10^n), {n, 0, 30}] (* or *) CoefficientList[Series[(2 - 13 x)/((1 - 3 x) (1 - 10 x)), {x, 0, 30}], x]
  • PARI
    a(n)=3^n + 10^n \\ Charles R Greathouse IV, Aug 26 2014

Formula

G.f.: (2-13*x)/((1-3*x)(1-10*x)).
E.g.f.: e^(3*x) + e^(10*x).
a(n) = 13*a(n-1)-30*a(n-2) for n>1.
a(n) = A000244(n) + A011557(n). - Michel Marcus, Aug 04 2014

A045588 Numbers k that divide 9^k + 3^k.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 18, 21, 27, 30, 50, 54, 63, 81, 90, 147, 150, 162, 171, 189, 243, 250, 270, 333, 438, 441, 450, 486, 513, 567, 729, 750, 810, 903, 999, 1029, 1197, 1250, 1314, 1323, 1350, 1458, 1539, 1701, 2187, 2190, 2250, 2331, 2430, 2709, 2997, 3087
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A074610.

Programs

  • Mathematica
    Select[Range[3100],Divisible[9^#+3^#,#]&] (* Harvey P. Dale, Aug 13 2015 *)
    Select[Range[300], Divisible[PowerMod[9, #, #] + PowerMod[3, #, #], #] &] (* Amiram Eldar, Oct 23 2021 *)
Showing 1-2 of 2 results.