cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A074467 Least k such that Sum_{i=1..k} 1/phi(i) >= n.

Original entry on oeis.org

1, 2, 4, 8, 13, 22, 38, 63, 105, 177, 296, 495, 828, 1386, 2318, 3879, 6489, 10854, 18158, 30375, 50811, 84998, 142187, 237853, 397885, 665589, 1113411, 1862534, 3115683, 5211973, 8718687, 14584783, 24397699, 40812930, 68272636, 114207749, 191048868, 319590137
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 177, p. 55, Ellipses, Paris 2008.
  • E. Landau, Uber die Zahlentheoretische Function ϕ(n) und ihre Beziehung zum Goldbachschen satz, Nachrichten der Koniglichten Gesel lschaft der Wissenschaften zu Göttingen mathematisch Physikalische klasse, Jahrgang (1900), pp. 177-186.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/EulerPhi[n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
  • PARI
    a(n)=my(s,k);while(sCharles R Greathouse IV, Jan 29 2013

Formula

a(n) ~ k exp(cn) for c = zeta(6)/zeta(2)/zeta(3) = A068468 and k = exp(-gamma + A085609) = 1.0316567993311528...; see Montgomery or Koninck. - Charles R Greathouse IV, Jan 29 2013

Extensions

More terms from Ryan Propper, Jul 09 2005
a(32)-a(38) from Donovan Johnson, Aug 21 2011

A074468 Least number m such that the Sigma-Harmonic sequence Sum_{k=1..m} 1/sigma(k) >= n.

Original entry on oeis.org

1, 7, 29, 129, 571, 2525, 11167, 49372, 218295, 965177, 4267457, 18868240, 83424514, 368855252, 1630865929, 7210751807, 31881800153
Offset: 1

Views

Author

Labos Elemer, Aug 29 2002

Keywords

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 129, p. 44, Ellipses, Paris, 2008.

Crossrefs

Programs

  • Mathematica
    {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, n]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Formula

Limit_{n->oo} a(n+1)/a(n) = exp(1/c) = 4.42142525588146107878... where c = A308039. - Amiram Eldar, May 05 2024

Extensions

2 more terms from Lekraj Beedassy, Jul 14 2008
a(11)-a(15) from Donovan Johnson, Aug 22 2011
a(16)-a(17) from Amiram Eldar, May 05 2024

A074469 Least m such that Sigma-Composite-Harmonic series Sum_{k=1..m} 1/A000203(A002808(k)) >= n.

Original entry on oeis.org

32, 301, 2123, 13172, 76105, 420007, 2245009, 11719362, 60071831, 303487314, 1515211979
Offset: 1

Views

Author

Labos Elemer, Sep 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] {s=0, s1=0}; Do[s=s+(1/DivisorSigma[1, c[n]]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]
  • PARI
    a(n)=my(m,s=0.);for(c=4,(2*n+2)^(n+2),if(isprime(c),next,m++);s+=1/sigma(c);if(s>=n,return(m))) \\ Charles R Greathouse IV, Feb 19 2013

Extensions

a(6)-a(11) from Donovan Johnson, Aug 22 2011

A074470 Least m such that Phi-Composite-Harmonic series Sum_{k=1..m} 1/A000010(A002808(k)) >= n.

Original entry on oeis.org

2, 7, 16, 31, 60, 113, 205, 371, 663, 1176, 2069, 3631, 6341, 11039, 19159, 33164, 57287, 98763, 169967, 292061, 501165, 858892, 1470334, 2514423, 4295912, 7333264, 12508213, 21319360, 36312685, 61811287, 105152840, 178787270, 303829041, 516074615, 876190239
Offset: 1

Views

Author

Labos Elemer, Sep 05 2002

Keywords

Crossrefs

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] {s=0, s1=0}; Do[s=s+(1/EulerPhi[c[n]]); If[Greater[Floor[s], s1], s1=Floor[s]; Print[{n, Floor[s]}]], {n, 1, 1000000}]

Extensions

More terms from Lambert Klasen (lambert.klasen(AT)gmx.net), Jul 23 2005
a(30)-a(35) from Donovan Johnson, Aug 21 2011
Showing 1-4 of 4 results.