cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074671 Five-digit distinct-digit primes.

Original entry on oeis.org

10243, 10247, 10253, 10259, 10267, 10273, 10289, 10357, 10369, 10427, 10429, 10453, 10457, 10459, 10463, 10487, 10529, 10567, 10589, 10597, 10627, 10639, 10657, 10687, 10723, 10729, 10739, 10753, 10789, 10837, 10847, 10853, 10859, 10867, 10937, 10957
Offset: 1

Views

Author

Zak Seidov, Aug 30 2002

Keywords

Comments

There are exactly 2529 five-digit primes with all distinct digits. The end of the sequence is: 97241, 97283, 97301, 97381, 97423, 97453, 97463, 97501, 97523, 97561, 97583, 97613, 97651, 97813, 97841, 97843, 97861, 98017, 98041, 98047, 98057, 98123, 98143, 98207, 98213, 98251, 98257, 98317, 98321, 98327, 98347, 98407, 98453, 98467, 98473, 98507, 98543, 98561, 98563, 98573, 98621, 98627, 98641, 98713, 98731.

Examples

			a(1)=10243 and a(2529)=98731 because these are the first and the last 5-digit primes with all distinct digits.
		

Crossrefs

The first differences are in A074672. 4-digit distinct-digit primes are in A074673. 6-digit distinct-digit primes are in A074669, see also A074670. 7-digit distinct-digit primes are in A074667, see also A074668. 8-digit distinct-digit primes are in A074665, see also A074666.

Programs

  • Mathematica
    Select[Range[10243, 98731, 2], Length[Union[IntegerDigits[ # ]]]==5&&PrimeQ[ # ]&]
    Select[Prime[Range[1230,9592]],Max[DigitCount[#]]==1&] (* Harvey P. Dale, Mar 16 2016 *)
  • PARI
    is(n)=isprime(n) && #digits(n)==5 && #Set(digits(n))==5 \\ Charles R Greathouse IV, Feb 11 2017