cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074673 Four-digit distinct-digit primes.

Original entry on oeis.org

1039, 1049, 1063, 1069, 1087, 1093, 1097, 1237, 1249, 1259, 1279, 1283, 1289, 1297, 1307, 1327, 1367, 1409, 1423, 1427, 1429, 1439, 1453, 1459, 1483, 1487, 1489, 1493, 1523, 1543, 1549, 1567, 1579, 1583, 1597, 1607, 1609, 1627, 1637, 1657, 1693, 1697
Offset: 1

Views

Author

Zak Seidov, Aug 30 2002

Keywords

Comments

There are exactly 510 four-digit primes with all distinct digits. The end of the sequence is: 8761, 8923, 8941, 8951, 8963, 8971, 9013, 9041, 9043, 9067, 9103, 9127, 9137, 9157, 9173, 9187, 9203, 9241, 9257, 9281, 9283, 9341, 9371, 9403, 9413, 9421, 9431, 9437, 9461, 9463, 9467, 9473, 9521, 9547, 9587, 9601, 9613, 9623, 9631, 9643, 9721, 9743, 9781, 9803, 9817, 9851, 9857, 9871.

Examples

			a(1) = 1039 and a(510) = 9871 because these are the first and the last four-digit primes with all distinct digits.
		

Crossrefs

The first differences are in A074674. 5-digit distinct-digit primes are in A074671, see also A074672. 6-digit distinct-digit primes are in A074669, see also A074670. 7-digit distinct-digit primes are in A074667, see also A074668. 8-digit distinct-digit primes are in A074665, see also A074666.

Programs

  • Mathematica
    Select[Range[1001, 9999, 2], Length[Union[IntegerDigits[#]]] == 4 && PrimeQ[#] &] (* Corrected by Harvey P. Dale, Jan 17 2011 *)
    Select[Prime[Range[168,1229]],Max[DigitCount[#]]==1&] (* Harvey P. Dale, Aug 22 2019 *)
  • PARI
    is(n)=isprime(n) && #digits(n)==4 && #Set(digits(n))==4 \\ Charles R Greathouse IV, Feb 11 2017