cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074677 a(n) = Sum_{i = 0..floor(n/2)} (-1)^(i + floor(n/2)) F(2*i + e), where F = A000045 (Fibonacci numbers) and e = (1-(-1)^n)/2.

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 6, 9, 15, 25, 40, 64, 104, 169, 273, 441, 714, 1156, 1870, 3025, 4895, 7921, 12816, 20736, 33552, 54289, 87841, 142129, 229970, 372100, 602070, 974169, 1576239, 2550409, 4126648, 6677056, 10803704, 17480761, 28284465, 45765225, 74049690
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2002

Keywords

Comments

Essentially the same as A006498 (g.f. 1/(1-x-x^3-x^4)).
a(n) is the convolution of F(n) with the sequence (1,0,-1,0,1,0,-1,0,...), A056594.

Crossrefs

Programs

  • Haskell
    a074677 n = a074677_list !! (n-1)
    a074677_list = 0 : 1 : 1 : 1 : zipWith (+) a074677_list
       (zipWith (+) (tail a074677_list) (drop 3 a074677_list))
    -- Reinhard Zumkeller, Dec 28 2011
    
  • Magma
    [&+[(-1)^(i+Floor(n/2))*Fibonacci(2*i+(1-(-1)^n) div 2): i in [0..Floor(n/2)]]: n in [0..50]]; // Bruno Berselli, Mar 15 2016
    
  • Mathematica
    CoefficientList[Series[x/(1 - x - x^3 - x^4), {x, 0, 40}], x]
  • PARI
    concat(0, Vec(x/((1+x^2)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Mar 15 2016
  • Sage
    [sum((-1)^(i+floor(n/2))*fibonacci(2*i+(1-(-1)^n)/2) for i in (0..floor(n/2))) for n in [0..50]]; # Bruno Berselli, Mar 15 2016
    

Formula

a(n) = a(n-1) + a(n-3) + a(n-4) for n>3, a(0)=0, a(1)=1, a(2)=1, a(3)=1.
G.f.: x/(1 - x - x^3 - x^4).
a(n) = Fibonacci(ceiling(n/2))*Fibonacci(floor(n/2+1)). - Alois P. Heinz, Jan 15 2024