A074677 a(n) = Sum_{i = 0..floor(n/2)} (-1)^(i + floor(n/2)) F(2*i + e), where F = A000045 (Fibonacci numbers) and e = (1-(-1)^n)/2.
0, 1, 1, 1, 2, 4, 6, 9, 15, 25, 40, 64, 104, 169, 273, 441, 714, 1156, 1870, 3025, 4895, 7921, 12816, 20736, 33552, 54289, 87841, 142129, 229970, 372100, 602070, 974169, 1576239, 2550409, 4126648, 6677056, 10803704, 17480761, 28284465, 45765225, 74049690
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Victoria Zhuravleva, Diophantine approximations with Fibonacci numbers, Journal de théorie des nombres de Bordeaux, 25 no. 2 (2013), p. 499-520. See Lemma 5.1.
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).
Programs
-
Haskell
a074677 n = a074677_list !! (n-1) a074677_list = 0 : 1 : 1 : 1 : zipWith (+) a074677_list (zipWith (+) (tail a074677_list) (drop 3 a074677_list)) -- Reinhard Zumkeller, Dec 28 2011
-
Magma
[&+[(-1)^(i+Floor(n/2))*Fibonacci(2*i+(1-(-1)^n) div 2): i in [0..Floor(n/2)]]: n in [0..50]]; // Bruno Berselli, Mar 15 2016
-
Mathematica
CoefficientList[Series[x/(1 - x - x^3 - x^4), {x, 0, 40}], x]
-
PARI
concat(0, Vec(x/((1+x^2)*(1-x-x^2)) + O(x^50))) \\ Colin Barker, Mar 15 2016
-
Sage
[sum((-1)^(i+floor(n/2))*fibonacci(2*i+(1-(-1)^n)/2) for i in (0..floor(n/2))) for n in [0..50]]; # Bruno Berselli, Mar 15 2016
Formula
a(n) = a(n-1) + a(n-3) + a(n-4) for n>3, a(0)=0, a(1)=1, a(2)=1, a(3)=1.
G.f.: x/(1 - x - x^3 - x^4).
a(n) = Fibonacci(ceiling(n/2))*Fibonacci(floor(n/2+1)). - Alois P. Heinz, Jan 15 2024
Comments