cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090502 Numbers k such that tau(k) = tau(k-1) + tau(k+1).

Original entry on oeis.org

6, 20, 28, 32, 52, 56, 68, 152, 174, 176, 184, 186, 208, 212, 248, 266, 268, 272, 292, 322, 328, 338, 464, 470, 472, 476, 518, 534, 536, 578, 582, 585, 590, 602, 606, 650, 656, 658, 666, 670, 686, 710, 754, 772, 788, 790, 804, 814, 836, 846, 848, 894, 988
Offset: 1

Views

Author

Amarnath Murthy, Dec 05 2003

Keywords

Crossrefs

Cf. A074757.

Programs

Extensions

More terms from Ray Chandler, Dec 09 2003

A190612 Numbers k such that (tau(k-1) + tau(k+1))/tau(k) is an integer, where tau(k)=A000005(k).

Original entry on oeis.org

6, 7, 11, 13, 19, 20, 23, 25, 28, 29, 31, 32, 34, 39, 41, 43, 46, 47, 51, 52, 53, 55, 56, 57, 59, 61, 62, 67, 68, 71, 73, 74, 79, 83, 85, 86, 87, 89, 94, 95, 97, 103, 107, 109, 113, 119, 127, 129, 131, 133, 134, 137, 139, 141, 142, 149, 151, 152, 155, 157
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 14 2011

Keywords

Examples

			6 is a term because (tau(5) + tau(7))/tau(6) = 1;
7 is a term because (tau(6) + tau(8))/tau(7) = 4;
11 is a term because (tau(10) + tau(12))/tau(11) = 5;
13 is a term because (tau(12) + tau(14))/tau(13) = 5.
		

Crossrefs

Cf. A000005 (number of divisors of n), A074757, A090502.

Programs

  • Maple
    with(numtheory): A190612 := proc(n) option remember: local k: if(n=1)then return 6:fi: for k from procname(n-1)+1 do if(tau(k-1)+tau(k+1) mod tau(k) = 0)then return k: fi: od: end: seq(A190612(n),n=1..70); # Nathaniel Johnston, May 14 2011
  • Mathematica
    Select[Range[200], IntegerQ[(DivisorSigma[0, #-1] + DivisorSigma[0, #+1]) / DivisorSigma[0, #]] &] (* Vaclav Kotesovec, Feb 14 2019 *)

A190266 Numbers k such that tau(k-1) = (tau(k))^2 = tau(k+1), where tau(k) = A000005(k) (number of divisors of k).

Original entry on oeis.org

7, 1241, 1673, 1751, 1769, 2471, 2839, 3161, 3305, 3497, 3711, 4135, 4265, 4279, 4471, 4711, 5191, 5433, 5561, 6017, 6041, 6103, 6313, 6809, 6953, 7031, 7241, 7463, 7671, 8023, 8057, 8345, 8791, 8889, 9079, 10167, 10793, 10841, 11111, 11209, 11391, 11751, 12297, 12729
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 06 2011

Keywords

Examples

			a(1)=7 because tau(6) = (tau(7))^2 = tau(8) = 4;
a(2)=1241 because tau(1240) = (tau(1241))^2 = tau(1242) = 16.
		

Crossrefs

Cf. A000005, A074757, A090502. Subsequence of A036436.

Programs

  • Mathematica
    Transpose[Select[Partition[Range[15000], 3, 1], DivisorSigma[0, #[[2]]]^2 == DivisorSigma[0, First[#]] == DivisorSigma[0, Last[#]]&]][[1]] + 1 (* Amiram Eldar, Jul 17 2019 after Harvey P. Dale at A175116 *)
  • PARI
    isA190266(n)=my(t=numdiv(n-1)); issquare(t) & t==numdiv(n+1) & t==numdiv(n)^2 \\ Charles R Greathouse IV, May 14 2011

Formula

A000005(a(n)-1) = (A000005(a(n)))^2 = A000005(a(n)+1).

Extensions

Data corrected by Amiram Eldar, Jul 17 2019
Showing 1-3 of 3 results.