cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A074757 Numbers n such that tau(n) = (tau(n+1)+tau(n-1))/2.

Original entry on oeis.org

34, 46, 62, 74, 86, 94, 142, 188, 202, 214, 218, 231, 243, 244, 262, 278, 302, 356, 375, 394, 422, 423, 428, 436, 446, 459, 478, 494, 584, 596, 604, 621, 628, 634, 664, 698, 716, 837, 861, 885, 903, 916, 922, 944, 956, 982, 1004, 1017, 1018, 1028, 1042, 1052
Offset: 1

Views

Author

Benoit Cloitre, Sep 28 2002

Keywords

Crossrefs

Cf. A090502.

Programs

  • Mathematica
    okQ[{a_,b_,c_}]:=(a+c)/2==b; Flatten[Position[Partition[DivisorSigma[0, Range[1100]],3,1],?okQ]]+1 (* _Harvey P. Dale, Aug 17 2013 *)

Formula

a(n) seems to be asymptotic to c*n with c around 23. [This conjecture is false. The limit a(n)/n, if it exists, is > 29, see graphs. - Vaclav Kotesovec, Feb 14 2019]

A190612 Numbers k such that (tau(k-1) + tau(k+1))/tau(k) is an integer, where tau(k)=A000005(k).

Original entry on oeis.org

6, 7, 11, 13, 19, 20, 23, 25, 28, 29, 31, 32, 34, 39, 41, 43, 46, 47, 51, 52, 53, 55, 56, 57, 59, 61, 62, 67, 68, 71, 73, 74, 79, 83, 85, 86, 87, 89, 94, 95, 97, 103, 107, 109, 113, 119, 127, 129, 131, 133, 134, 137, 139, 141, 142, 149, 151, 152, 155, 157
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 14 2011

Keywords

Examples

			6 is a term because (tau(5) + tau(7))/tau(6) = 1;
7 is a term because (tau(6) + tau(8))/tau(7) = 4;
11 is a term because (tau(10) + tau(12))/tau(11) = 5;
13 is a term because (tau(12) + tau(14))/tau(13) = 5.
		

Crossrefs

Cf. A000005 (number of divisors of n), A074757, A090502.

Programs

  • Maple
    with(numtheory): A190612 := proc(n) option remember: local k: if(n=1)then return 6:fi: for k from procname(n-1)+1 do if(tau(k-1)+tau(k+1) mod tau(k) = 0)then return k: fi: od: end: seq(A190612(n),n=1..70); # Nathaniel Johnston, May 14 2011
  • Mathematica
    Select[Range[200], IntegerQ[(DivisorSigma[0, #-1] + DivisorSigma[0, #+1]) / DivisorSigma[0, #]] &] (* Vaclav Kotesovec, Feb 14 2019 *)

A190266 Numbers k such that tau(k-1) = (tau(k))^2 = tau(k+1), where tau(k) = A000005(k) (number of divisors of k).

Original entry on oeis.org

7, 1241, 1673, 1751, 1769, 2471, 2839, 3161, 3305, 3497, 3711, 4135, 4265, 4279, 4471, 4711, 5191, 5433, 5561, 6017, 6041, 6103, 6313, 6809, 6953, 7031, 7241, 7463, 7671, 8023, 8057, 8345, 8791, 8889, 9079, 10167, 10793, 10841, 11111, 11209, 11391, 11751, 12297, 12729
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 06 2011

Keywords

Examples

			a(1)=7 because tau(6) = (tau(7))^2 = tau(8) = 4;
a(2)=1241 because tau(1240) = (tau(1241))^2 = tau(1242) = 16.
		

Crossrefs

Cf. A000005, A074757, A090502. Subsequence of A036436.

Programs

  • Mathematica
    Transpose[Select[Partition[Range[15000], 3, 1], DivisorSigma[0, #[[2]]]^2 == DivisorSigma[0, First[#]] == DivisorSigma[0, Last[#]]&]][[1]] + 1 (* Amiram Eldar, Jul 17 2019 after Harvey P. Dale at A175116 *)
  • PARI
    isA190266(n)=my(t=numdiv(n-1)); issquare(t) & t==numdiv(n+1) & t==numdiv(n)^2 \\ Charles R Greathouse IV, May 14 2011

Formula

A000005(a(n)-1) = (A000005(a(n)))^2 = A000005(a(n)+1).

Extensions

Data corrected by Amiram Eldar, Jul 17 2019

A347076 Numbers m such that tau(m) = tau(m-1) + tau(m+1) and simultaneously sigma(m) = sigma(m-1) + sigma(m+1).

Original entry on oeis.org

89484, 167784, 8587065618, 24033737496, 41249560520, 161721015522, 206958258156, 441151731162, 600656241732, 1013494535238, 4648478084262, 5099258875122, 7897343836494, 21060284613738, 26847208137084
Offset: 1

Views

Author

Jaroslav Krizek, Aug 15 2021

Keywords

Comments

Intersection of A073500 and A090502.
a(n) is even. If a(n) is odd then two consecutive numbers are perfect squares. This only happens with (0, 1) which does not give terms. - David A. Corneth, Aug 16 2021

Examples

			tau(89484) = tau(89483) + tau(89485); 12 = 4 + 8.
sigma(89484) = sigma(89483) + sigma(89485); 208824 = 91608 + 117216.
		

Crossrefs

Cf. A000005 (tau), A000203 (sigma), A073500, A090502.

Programs

  • Magma
    [m: m in [2..10^5] | #Divisors(m) eq #Divisors(m - 1) + #Divisors(m + 1) and &+Divisors(m) eq &+Divisors(m - 1) + &+Divisors(m + 1)]
  • Mathematica
    Select[Range[200000], DivisorSigma[{0, 1}, # - 1] + DivisorSigma[{0, 1}, # + 1] - DivisorSigma[{0, 1}, # ] == {0, 0} &] (* Amiram Eldar, Aug 16 2021 *)

Extensions

a(14)-a(15) from Martin Ehrenstein, Sep 24 2021
Showing 1-4 of 4 results.