A074818 Number of integers in {1, 2, ..., prime(n)} that are coprime to n.
2, 2, 4, 4, 9, 5, 15, 10, 16, 12, 29, 13, 38, 19, 26, 27, 56, 21, 64, 29, 42, 36, 80, 30, 78, 47, 69, 46, 106, 31, 123, 66, 84, 66, 103, 51, 153, 78, 104, 70, 175, 52, 187, 88, 106, 96, 207, 75, 195, 92, 147, 111, 237, 84, 187, 113, 170, 131, 273, 75, 279, 142, 176
Offset: 1
Keywords
Examples
There are five numbers in {1, 2, ..., prime(6) = 13} that are coprime to 6, i.e. 1, 5, 7, 11, 13. Hence a(6) = 5.
Crossrefs
Programs
-
Maple
with(numtheory): seq(add(mobius(d)*floor(ithprime(n)/d), d in divisors(n)), n=1..100) ; # Ridouane Oudra, Jun 04 2025
-
Mathematica
h[n_] := Module[{l}, l = {}; For[i = 1, i <= Prime[n], i++, If[GCD[i, n] == 1, l = Append[l, i]]]; l]; Table[Length[h[i]], {i, 1, 100}]
-
PARI
a(n) = sum(k=1, prime(n), gcd(k, n)==1); \\ Michel Marcus, Jun 04 2025
-
PARI
a(n) = my(p = prime(n)); eulerphi(n) * (p \ n) + sum(i = (p \ n)*n + 1, p, gcd(i, n) == 1); \\ David A. Corneth, Jun 04 2025
Formula
a(n) = Sum_{d|n} mu(d)*floor(prime(n)/d). - Ridouane Oudra, Jun 04 2025
Comments