cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074822 Primes p such that p + 4 is prime and p == 9 (mod 10).

Original entry on oeis.org

19, 79, 109, 229, 349, 379, 439, 499, 739, 769, 859, 1009, 1279, 1429, 1489, 1549, 1579, 1609, 1999, 2239, 2269, 2389, 2539, 2659, 2689, 2749, 3019, 3079, 3319, 3529, 3919, 4129, 4519, 4639, 4729, 4789, 4969, 4999, 5479, 5569, 5689, 5779, 5839, 6199
Offset: 1

Views

Author

Roger L. Bagula, Sep 30 2002

Keywords

Comments

From Rémi Eismann, May 14 2006; May 04 2007: (Start)
Also primes for which k is equal to 5 in A117078. Examples: prime(9) = prime(8) + (prime(8) mod 5) = 19 + (19 mod 5)=23; prime(23) = prime(22) + (prime(22) mod 5) = 79 + (79 mod 5)=83; prime(1359) = prime(1358) + (prime(1358) mod 5) = 11239+ (11239 mod 5)=11243.
The prime numbers in this sequence are of the form (10i-1) with i=(level(n)+1)/2, level(n) defined in A117563.
Consider A117078: a(n) = smallest k such that prime(n+1) = prime(n) + (prime(n) mod k), or 0 if no such k exists. Sequence gives values of prime(n) for which k=5. (End)
p is the lesser member of cousin primes (p,p+4) such that p == 9 (mod 10). - Muniru A Asiru, Jul 03 2017

Crossrefs

Intersection of A023200 and A030433.

Programs

  • Mathematica
    Prime[ Select[ Range[1000], Prime[ # ] + 4 == Prime[ # + 1] && Mod[ Prime[ # ], 10] == 9 & ]]
    Transpose[Select[Partition[Prime[Range[820]],2,1],Last[#]-First[#] == 4 && Mod[ First[ #],10]==9&]][[1]] (* Harvey P. Dale, Oct 20 2011 *)
  • PARI
    is(n)=n%30==19 && isprime(n+4) && isprime(n) \\ Charles R Greathouse IV, Jul 12 2017
    
  • PARI
    list(lim)=my(v=List(),p=19); forprime(q=23,lim+4, if(q-p==4 && p%30==19, listput(v,p)); p=q); Vec(v) \\ Charles R Greathouse IV, Jul 12 2017

Extensions

Edited by Robert G. Wilson v and N. J. A. Sloane, Oct 03 2002
Entry revised by N. J. A. Sloane, Feb 24 2007