cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074848 Number of 4-infinitary divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 2, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 4, 2, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 10 2002

Keywords

Comments

If n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a<=b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of n.

Examples

			2^4*3 is a 4-infinitary-divisor of 2^5*3^2 because 2^4*3 = 2^10*3^1 and 2^5*3^2 = 2^11*3^2 in 4-ary expanded power. All corresponding digits satisfy the condition. 1<=1, 0<=1, 1<=2.
		

Crossrefs

Programs

  • Maple
    A074848 := proc(n) if n= 1 then 1; else ifa := ifactors(n)[2] ; a := 1; for f in ifa do e := convert(op(2,f),base,4) ; a := a*mul(d+1,d=e) ; end do: end if; end proc:
    seq(A074848(n),n=1..70) ; # R. J. Mathar, Feb 08 2011
  • Mathematica
    f[p_, e_] := Times @@ (IntegerDigits[e, 4] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]  (* Amiram Eldar, Sep 09 2020 *)
  • PARI
    A268444(n) = { my(m=1, d); while(n, d = (n%4); m *= (1+d); n = (n-d)/4); m; };
    A074848(n) = factorback(apply(e -> A268444(e), factorint(n)[, 2])) \\ (After A037445) - Antti Karttunen, May 28 2017
    
  • Python
    from math import prod
    from sympy import factorint
    from gmpy2 import digits
    def A268444(n):
        s = digits(n,4)
        return prod((int(d)+1)**s.count(d) for d in '123')
    def A074848(n): return prod(A268444(e) for e in factorint(n).values()) # Chai Wah Wu, Apr 24 2025
  • Scheme
    (definec (A074848 n) (if (= 1 n) n (* (A268444 (A067029 n)) (A074848 (A028234 n))))) ;; Antti Karttunen, May 28 2017
    

Formula

Multiplicative: If e = sum d_k 4^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005
a(1) = 1; for n > 1, a(n) = A268444(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 formula.] - _Antti Karttunen, May 28 2017

Extensions

More terms from Antti Karttunen, May 28 2017
Name shortened by Amiram Eldar, Sep 09 2020