A074848 Number of 4-infinitary divisors of n.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 2, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 4, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 4, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 6, 4, 8, 2, 6, 4, 8, 2, 12, 2, 4, 6, 6, 4, 8, 2, 4, 2, 4, 2, 12, 4, 4, 4, 8, 2, 12, 4, 6, 4, 4, 4, 8, 2, 6, 6, 9, 2, 8, 2, 8, 8
Offset: 1
Examples
2^4*3 is a 4-infinitary-divisor of 2^5*3^2 because 2^4*3 = 2^10*3^1 and 2^5*3^2 = 2^11*3^2 in 4-ary expanded power. All corresponding digits satisfy the condition. 1<=1, 0<=1, 1<=2.
Links
Programs
-
Maple
A074848 := proc(n) if n= 1 then 1; else ifa := ifactors(n)[2] ; a := 1; for f in ifa do e := convert(op(2,f),base,4) ; a := a*mul(d+1,d=e) ; end do: end if; end proc: seq(A074848(n),n=1..70) ; # R. J. Mathar, Feb 08 2011
-
Mathematica
f[p_, e_] := Times @@ (IntegerDigits[e, 4] + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)
-
PARI
A268444(n) = { my(m=1, d); while(n, d = (n%4); m *= (1+d); n = (n-d)/4); m; }; A074848(n) = factorback(apply(e -> A268444(e), factorint(n)[, 2])) \\ (After A037445) - Antti Karttunen, May 28 2017
-
Python
from math import prod from sympy import factorint from gmpy2 import digits def A268444(n): s = digits(n,4) return prod((int(d)+1)**s.count(d) for d in '123') def A074848(n): return prod(A268444(e) for e in factorint(n).values()) # Chai Wah Wu, Apr 24 2025
-
Scheme
(definec (A074848 n) (if (= 1 n) n (* (A268444 (A067029 n)) (A074848 (A028234 n))))) ;; Antti Karttunen, May 28 2017
Formula
Multiplicative: If e = sum d_k 4^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005
a(1) = 1; for n > 1, a(n) = A268444(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 formula.] - _Antti Karttunen, May 28 2017
Extensions
More terms from Antti Karttunen, May 28 2017
Name shortened by Amiram Eldar, Sep 09 2020
Comments