cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A037445 Number of infinitary divisors (or i-divisors) of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 8, 2, 8, 4, 4, 4, 4, 4, 8, 2, 4, 4, 4, 2, 8, 2, 8, 8
Offset: 1

Views

Author

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.
The smallest number m with exactly 2^n infinitary divisors is A037992(n); for these values m, a(m) increases also to a new record. - Bernard Schott, Mar 09 2023

Examples

			For n = 8, n = 2^3 = 2^"11" (writing 3 in binary) so the infinitary divisors are 2^"00" = 1, 2^"01" = 2, 2^"10" = 4 and 2^"11" = 8, so a(8) = 4.
For n = 90, n = 2*5*9 where 2,5,9 are in A050376, so a(90) = 2^3 = 8.
		

Crossrefs

Programs

  • Haskell
    a037445 = product . map (a000079 . a000120) . a124010_row
    -- Reinhard Zumkeller, Mar 19 2013
    
  • Maple
    A037445 := proc(n)
        local a,p;
        a := 1 ;
        for p in ifactors(n)[2] do
            a := a*2^wt(p[2]) ;
        end do:
        a ;
    end proc: # R. J. Mathar, May 16 2016
  • Mathematica
    Table[Length@((Times @@ (First[it]^(#1 /. z -> List)) & ) /@
    Flatten[Outer[z, Sequence @@ bitty /@
    Last[it = Transpose[FactorInteger[k]]], 1]]), {k, 2, 240}]
    bitty[k_] := Union[Flatten[Outer[Plus, Sequence @@ ({0, #1} & ) /@ Union[2^Range[0, Floor[Log[2, k]]]*Reverse[IntegerDigits[k, 2]]]]]]
    y[n_] := Select[Range[0, n], BitOr[n, # ] == n & ] divisors[Infinity][1] := {1}
    divisors[Infinity][n_] := Sort[Flatten[Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^y[m])]]] Length /@ divisors[Infinity] /@ Range[105] (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *)
    a[1] = 1; a[n_] := Times @@ Flatten[ 2^DigitCount[#, 2, 1]&  /@ FactorInteger[n][[All, 2]] ]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Aug 19 2013, after Reinhard Zumkeller *)
  • PARI
    A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[,2])) \\ Andrew Lelechenko, May 10 2014
    
  • Python
    from sympy import factorint
    def wt(n): return bin(n).count("1")
    def a(n):
        f=factorint(n)
        return 2**sum([wt(f[i]) for i in f]) # Indranil Ghosh, May 30 2017
  • Scheme
    (define (A037445 n) (if (= 1 n) n (* (A001316 (A067029 n)) (A037445 (A028234 n))))) ;; Antti Karttunen, May 28 2017
    

Formula

Multiplicative with a(p^e) = 2^A000120(e). - David W. Wilson, Sep 01 2001
Let n = q_1*...*q_k, where q_1,...,q_k are different terms of A050376. Then a(n) = 2^k (the number of subsets of a set with k elements is 2^k). - Vladimir Shevelev, Feb 19 2011.
a(n) = Product_{k=1..A001221(n)} A000079(A000120(A124010(n,k))). - Reinhard Zumkeller, Mar 19 2013
From Antti Karttunen, May 28 2017: (Start)
a(n) = A286575(A156552(n)). [Because multiplicative with a(p^e) = A001316(e).]
a(n) = 2^A064547(n). (End)
a(A037992(n)) = 2^n. - Bernard Schott, Mar 10 2023

Extensions

Corrected and extended by Naohiro Nomoto, Jun 21 2001

A318465 The number of Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the Zeckendorf expansion (A014417) of each s(i) contains only terms that are in the Zeckendorf expansion of r(i).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with Zeckendorf expansion instead of binary expansion. - Amiram Eldar, Jan 09 2020

Examples

			a(16) = 4 since 16 = 2^4 and the Zeckendorf expansion of 4 is 101, i.e., its Zeckendorf representation is a set with 2 terms: {1, 3}. There are 4 possible exponents of 2: 0, 1, 3 and 4, corresponding to the subsets {}, {1}, {3} and {1, 3}. Thus 16 has 4 Zeckendorf-infinitary divisors: 2^0 = 1, 2^1 = 2, 2^3 = 8, and 2^4 = 16.
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; Fibonacci[1 + Position[Reverse@fr, ?(# == 1 &)]]]; f[p, e_] := 2^Length@fb[e]; a[1] = 1; a[n_] := Times @@ (Flatten@(f @@@ FactorInteger[n])); Array[a, 100] (* Amiram Eldar, Jan 09 2020 after Robert G. Wilson v at A014417 *)
  • PARI
    A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
    A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
    A318465(n) = factorback(apply(e -> 2^A007895(e),factor(n)[,2]));

Formula

Multiplicative with a(p^e) = 2^A007895(e), where A007895(n) gives the number of terms in the Zeckendorf representation of n.
a(n) = 2^A318464(n).

Extensions

Name edited and interpretation in terms of divisors added by Amiram Eldar, Jan 09 2020

A038148 Number of 3-infinitary divisors of n: if n = Product p(i)^r(i) and d = Product p(i)^s(i), each s(i) has a digit a <= b in its ternary expansion everywhere that the corresponding r(i) has a digit b, then d is a 3-infinitary-divisor of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 2, 3, 4, 2, 6, 2, 4, 4, 4, 2, 6, 2, 6, 4, 4, 2, 4, 3, 4, 2, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 4, 2, 8, 2, 6, 6, 4, 2, 8, 3, 6, 4, 6, 2, 4, 4, 4, 4, 4, 2, 12, 2, 4, 6, 3, 4, 8, 2, 6, 4, 8, 2, 6, 2, 4, 6, 6, 4, 8, 2, 8, 4, 4, 2, 12, 4, 4, 4, 4, 2, 12, 4, 6, 4, 4, 4, 12, 2, 6, 6, 9, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Keywords

Comments

Multiplicative: If e = sum d_k 3^k, then a(p^e) = prod (d_k+1). - Christian G. Bower, May 19 2005

Examples

			2^3*3 is a 3-infinitary-divisor of 2^5*3^2 because 2^3*3 = 2^10*3^1 and 2^5*3^2 = 2^12*3^2 in ternary expanded power. All corresponding digits satisfy the condition. 1 <= 1, 0 <= 2, 1 <= 2.
		

Crossrefs

Programs

Formula

a(1) = 1; for n > 1, a(n) = A006047(A067029(n)) * a(A028234(n)). [After Christian G. Bower's 2005 comment.] - Antti Karttunen, May 28 2017

Extensions

More terms from Naohiro Nomoto, Jun 21 2001
Data section further extended to 105 terms by Antti Karttunen, May 28 2017

A074847 Sum of 4-infinitary divisors of n: if n=Product p(i)^r(i) and d=Product p(i)^s(i), each s(i) has a digit a<=b in its 4-ary expansion everywhere that the corresponding r(i) has a digit b, then d is a 4-infinitary-divisor of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 17, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 51, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 68, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 119, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Yasutoshi Kohmoto, Sep 10 2002

Keywords

Comments

If we group the exponents e in the Bower-Harris formula into the sets with d_k=0, 1, 2 and 3, we see that every n has a unique representation of the form n=prod q_i *prod (r_j)^2 *prod (s_k)^3, where each of q_i, r_j, s_k is a prime power of the form p^(k^4), p prime, k>=0. Using this representation, a(n)=prod (q_i+1)prod ((r_j)^2+r_j+1)prod ((s_k)^3+(s_k)^2+s_k+1) by simple expansion of the quotient on the right hand side of the Bower-Harris formula. - Vladimir Shevelev, May 08 2013

Examples

			2^4*3 is a 4-infinitary-divisor of 2^5*3^2 because 2^4*3 = 2^10*3^1 and 2^5*3^2 = 2^11*3^2 in 4-ary expanded power. All corresponding digits satisfy the condition. 1<=1, 0<=1, 1<=2.
		

Crossrefs

Cf. A049417 (2-infinitary), A049418 (3-infinitary), A097863 (5-infinitary).

Programs

  • Haskell
    following Bower and Harris, cf. A049418:
    a074847 1 = 1
    a074847 n = product $ zipWith f (a027748_row n) (a124010_row n) where
       f p e = product $ zipWith div
               (map (subtract 1 . (p ^)) $
                    zipWith (*) a000302_list $ map (+ 1) $ a030386_row e)
               (map (subtract 1 . (p ^)) a000302_list)
    -- Reinhard Zumkeller, Sep 18 2015
  • Maple
    A074847 := proc(n) option remember; ifa := ifactors(n)[2] ; a := 1 ; if nops(ifa) = 1 then p := op(1,op(1,ifa)) ; e := op(2,op(1,ifa)) ; d := convert(e,base,4) ; for k from 0 to nops(d)-1 do a := a*(p^((1+op(k+1,d))*4^k)-1)/(p^(4^k)-1) ; end do: else for d in ifa do a := a*procname( op(1,d)^op(2,d)) ; end do: return a; end if; end proc:
    seq(A074847(n),n=1..100) ; # R. J. Mathar, Oct 06 2010
  • Mathematica
    f[p_, e_] := Module[{d = IntegerDigits[e, 4]}, m = Length[d]; Product[(p^((d[[j]] + 1)*4^(m - j)) - 1)/(p^(4^(m - j)) - 1), {j, 1, m}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 09 2020 *)

Formula

Multiplicative. If e = sum_{k >= 0} d_k 4^k (base 4 representation), then a(p^e) = prod_{k >= 0} (p^(4^k*{d_k+1}) - 1)/(p^(4^k) - 1). - Christian G. Bower and Mitch Harris, May 20 2005

Extensions

More terms from R. J. Mathar, Oct 06 2010

A331109 The number of dual-Zeckendorf-infinitary divisors of n = Product_{i} p(i)^r(i): divisors d = Product_{i} p(i)^s(i), such that the dual Zeckendorf expansion (A104326) of each s(i) contains only terms that are in the dual Zeckendorf expansion of r(i).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 8, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 8, 4, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jan 09 2020

Keywords

Comments

Dual-Zeckendorf-infinitary divisors are analogous to infinitary divisors (A077609) with dual Zeckendorf expansion instead of binary expansion.
First differs from A286324 at n = 32.

Examples

			a(32) = 4 since 32 = 2^5 and the dual Zeckendorf expansion of 5 is 110, i.e., its dual Zeckendorf representation is a set with 2 terms: {2, 3}. There are 4 possible exponents of 2: 0, 2, 3 and 5, corresponding to the subsets {}, {2}, {3} and {2, 3}. Thus 32 has 4 dual-Zeckendorf-infinitary divisors: 2^0 = 1, 2^2 = 4, 2^3 = 8, and 2^5 = 32.
		

Crossrefs

Programs

  • Mathematica
    fibTerms[n_] := Module[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr];
    dualZeck[n_] := Module[{v = fibTerms[n]}, nv = Length[v]; i = 1; While[i <= nv - 2, If[v[[i]] == 1 && v[[i + 1]] == 0 && v[[i + 2]] == 0, v[[i]] = 0; v[[i + 1]] = 1; v[[i + 2]] = 1; If[i > 2, i -= 3]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, 1, 2^Total[v[[i[[1, 1]] ;; -1]]]]];
    f[p_, e_] := dualZeck[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]

Formula

Multiplicative with a(p^e) = 2^A112310(e).

A268444 a(n) = Product_{i=0..k}(n_i+1) where n = Sum_{i=0..k}n_i*4^i is the base-4 representation of n.

Original entry on oeis.org

1, 2, 3, 4, 2, 4, 6, 8, 3, 6, 9, 12, 4, 8, 12, 16, 2, 4, 6, 8, 4, 8, 12, 16, 6, 12, 18, 24, 8, 16, 24, 32, 3, 6, 9, 12, 6, 12, 18, 24, 9, 18, 27, 36, 12, 24, 36, 48, 4, 8, 12, 16, 8, 16, 24, 32, 12, 24, 36, 48, 16, 32, 48, 64, 2, 4, 6, 8, 4, 8, 12, 16, 6, 12, 18, 24
Offset: 0

Views

Author

Tom Edgar, Feb 04 2016

Keywords

Comments

a(n) gives the number of 1's in row n of A243756.

Examples

			The base-4 representation of 10 is (2,2) so a(10) = (2+1)*(2+1) = 9.
		

Crossrefs

Programs

  • PARI
    a(n) = my(d=digits(n,4)); prod(k=1, #d, d[k]+1); \\ Michel Marcus, Feb 05 2016
    
  • Python
    from math import prod
    from gmpy2 import digits
    def A268444(n):
        s = digits(n,4)
        return prod((int(d)+1)**s.count(d) for d in '123') # Chai Wah Wu, Apr 24 2025
  • Sage
    [prod(x+1 for x in n.digits(4)) for n in [0..75]]
    
  • Scheme
    (define (A268444 n) (if (zero? n) 1 (let ((d (mod n 4))) (* (+ 1 d) (A268444 (/ (- n d) 4)))))) ;; For R6RS standard. Use modulo instead of mod in older Schemes like MIT/GNU Scheme. - Antti Karttunen, May 28 2017
    

Formula

a(n) = Product_{i=0..k}(n_i+1) where n = Sum_{i=0..k}n_i*4^i.

A376887 The number of divisors of n that are products of factors of the form p^(k!) with multiplicities not larger than their multiplicity in n, where p is a prime and k >= 1, when the factorization of n is uniquely done using the factorial-base representation of the exponents in the prime factorization of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 8, 2, 6, 4, 4, 4, 4, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 2, 6, 2, 4, 4, 4, 2, 8, 4, 8, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 8, 2, 4, 4, 4, 4, 8, 2, 6, 3, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Oct 08 2024

Keywords

Comments

See A376885 for details about this factorization.
If n = Product p_i^e_i is the canonical prime factorization of n, then the divisors that are counted by this function are d = Product p_i^s_i, where all the digits of s_i in factorial base are not larger than the corresponding digits of e_i.
The sum of these divisors is given by A376888(n).

Examples

			For n = 12 = 2^2 * 3^1, the representation of 2 in factorial base is 10, i.e., 2 = 2!, so 12 = (2^(2!))^1 * (3^(1!))^1 and a(12) = (1+1) * (1+1) = 4, corresponding to the 4 divisors 1, 3, 4 and 12.
		

Crossrefs

Programs

  • Mathematica
    fdigprod[n_] := Module[{k = n, m = 2, r, s = 1}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s *= (r+1); m++]; s]; f[p_, e_] := fdigprod[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    fdigprod(n) = {my(k = n, m = 2, r, s = 1); while([k, r] = divrem(k, m); k != 0 || r != 0, s *= (r+1); m++); s;}
    a(n) = {my(e = factor(n)[, 2]); prod(i = 1, #e, fdigprod(e[i]));}

Formula

Multiplicative with a(p^e) = A227154(e).
Showing 1-7 of 7 results.