cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074872 Inverse BinomialMean transform of the Fibonacci sequence A000045 (with the initial 0 omitted).

Original entry on oeis.org

1, 1, 5, 5, 25, 25, 125, 125, 625, 625, 3125, 3125, 15625, 15625, 78125, 78125, 390625, 390625, 1953125, 1953125, 9765625, 9765625, 48828125, 48828125, 244140625, 244140625, 1220703125, 1220703125, 6103515625, 6103515625, 30517578125, 30517578125, 152587890625
Offset: 1

Views

Author

John W. Layman, Sep 12 2002

Keywords

Comments

See A075271 for the definition of the BinomialMean transform.
The inverse binomial transform of 2^n*c(n+1), where c(n) is the solution to c(n) = c(n-1) + k*c(n-2), a(0)=0, a(1)=1 is 1, 1, 4k+1, 4k+1, (4k+1)^2, ... - Paul Barry, Feb 12 2004

Crossrefs

Programs

Formula

a(n) = 5^floor((n-1)/2).
a(1)=1, a(2)=1 and, for n > 2, a(n) = 5*a(n-2).
From Paul Barry, Feb 12 2004: (Start)
G.f.: x*(1+x)/(1-5*x^2);
a(n) = (1/(2*sqrt(5))*((1+sqrt(5))*(sqrt(5))^n - (1-sqrt(5))*(-sqrt(5))^n)).
Inverse binomial transform of A063727 (2^n*Fibonacci(n+1)). (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
E.g.f.: (cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x) - 1)/5. - Stefano Spezia, May 24 2024