A074878 Row sums of triangle in A074829.
1, 2, 6, 14, 32, 70, 150, 316, 658, 1358, 2784, 5678, 11534, 23356, 47178, 95110, 191440, 384854, 772902, 1550972, 3110306, 6234142, 12490176, 25015774, 50088862, 100270460, 200690970, 401624726, 803642288, 1607920198, 3216868854, 6435401788, 12873496114, 25751348846
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).
Crossrefs
Cf. A000045.
Programs
-
GAP
List([1..40], n-> 3*2^(n-1) - 2*Fibonacci(n+1)); # G. C. Greubel, Jul 12 2019
-
Magma
[3*2^(n-1) - 2*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Jul 12 2019
-
Mathematica
Table[3*2^(n-1) - 2*Fibonacci[n+1], {n, 1, 40}] (* G. C. Greubel, Jul 12 2019 *)
-
PARI
vector(40, n, 3*2^(n-1) -2*fibonacci(n+1)) \\ G. C. Greubel, Jul 12 2019
-
Sage
[3*2^(n-1) - 2*fibonacci(n+1) for n in (1..40)] # G. C. Greubel, Jul 12 2019
Formula
From Philippe Deléham, Sep 20 2006: (Start)
a(1)=1, a(2)=2, a(3)=6, a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) for n>3.
a(n) = 3*2^(n-1) - 2*F(n+1), F(n)=A000045(n).
G.f.: x*(1-x+x^2)/(1-3*x+x^2+2*x^3). (End)
a(1)=1, a(n) = 2*(a(n-1) + F(n-2)) where the Fibonacci number F(n-2) = A000045(n-2). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 06 2007
a(n) = 3*2^n - 2*F(n+2), with offset 0 and F(n)=A000045(n). - Johannes W. Meijer, Aug 15 2010
Extensions
More terms from Philippe Deléham, Sep 20 2006
Terms a(23) onward added by G. C. Greubel, Jul 12 2019
Comments