cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074878 Row sums of triangle in A074829.

Original entry on oeis.org

1, 2, 6, 14, 32, 70, 150, 316, 658, 1358, 2784, 5678, 11534, 23356, 47178, 95110, 191440, 384854, 772902, 1550972, 3110306, 6234142, 12490176, 25015774, 50088862, 100270460, 200690970, 401624726, 803642288, 1607920198, 3216868854, 6435401788, 12873496114, 25751348846
Offset: 1

Views

Author

Joseph L. Pe, Sep 30 2002

Keywords

Comments

An elephant sequence, see A175654. For the corner squares 16 A[5] vectors, with decimal values between 43 and 424, lead to this sequence. For the central square these vectors lead to the companion sequence A175657. - Johannes W. Meijer, Aug 15 2010

Crossrefs

Cf. A000045.

Programs

  • GAP
    List([1..40], n-> 3*2^(n-1) - 2*Fibonacci(n+1)); # G. C. Greubel, Jul 12 2019
  • Magma
    [3*2^(n-1) - 2*Fibonacci(n+1): n in [1..40]]; // G. C. Greubel, Jul 12 2019
    
  • Mathematica
    Table[3*2^(n-1) - 2*Fibonacci[n+1], {n, 1, 40}] (* G. C. Greubel, Jul 12 2019 *)
  • PARI
    vector(40, n, 3*2^(n-1) -2*fibonacci(n+1)) \\ G. C. Greubel, Jul 12 2019
    
  • Sage
    [3*2^(n-1) - 2*fibonacci(n+1) for n in (1..40)] # G. C. Greubel, Jul 12 2019
    

Formula

From Philippe Deléham, Sep 20 2006: (Start)
a(1)=1, a(2)=2, a(3)=6, a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) for n>3.
a(n) = 3*2^(n-1) - 2*F(n+1), F(n)=A000045(n).
G.f.: x*(1-x+x^2)/(1-3*x+x^2+2*x^3). (End)
a(1)=1, a(n) = 2*(a(n-1) + F(n-2)) where the Fibonacci number F(n-2) = A000045(n-2). - Anton Vrba (antonvrba(AT)yahoo.com), Feb 06 2007
a(n) = 3*2^n - 2*F(n+2), with offset 0 and F(n)=A000045(n). - Johannes W. Meijer, Aug 15 2010

Extensions

More terms from Philippe Deléham, Sep 20 2006
Terms a(23) onward added by G. C. Greubel, Jul 12 2019