A074924 Numbers whose square is the sum of two successive primes.
6, 10, 12, 24, 42, 48, 62, 72, 84, 90, 110, 120, 122, 174, 204, 208, 220, 232, 240, 264, 306, 326, 336, 372, 386, 408, 410, 444, 454, 456, 468, 470, 474, 522, 546, 550, 594, 600, 630, 640, 642, 686, 740, 750, 762, 766, 788, 802, 852, 876, 882, 920, 936, 970
Offset: 1
Keywords
Examples
6^2 = 17 + 19, 1610^2 = 1296041 + 1296059.
Links
- Zak Seidov, Table of n, a(n) for n = 1..22054 (all terms up to 10^6).
Crossrefs
Programs
-
Maple
filter:= proc(n) local t; t:= n^2/2; prevprime(ceil(t)) + nextprime(floor(t)) = n^2 end proc: select(filter, [$3..1000]); # Robert Israel, Nov 19 2024
-
Mathematica
Select[Sqrt[#]&/@(Total/@Partition[Prime[Range[50000]],2,1]),IntegerQ] (* Harvey P. Dale, Oct 04 2014 *) f@n_ := Sqrt@Select[(2*Range@n)^2, # == Plus @@ NextPrime[#/2, {-1, 1}] &]; f@485 (* Hans Rudolf Widmer, Nov 19 2024 *)
-
PARI
is(n)=if(n%2, return(0)); nextprime(n^2/2+1)+precprime(n^2/2)==n^2 \\ Charles R Greathouse IV, Apr 29 2015
-
PARI
select( {is_A074924(n)=!bittest(n=n^2,0) && precprime(n\2)+nextprime(n\/2)==n}, [1..999]) \\ M. F. Hasler, Jan 03 2020
-
PARI
A74924=[6]; apply( A074924(n)={while(n>#A74924, my(N=A74924[#A74924]); until( is_A074924(N+=2),);A74924=concat(A74924,N));A74924[n]}, [1..99]) \\ M. F. Hasler, Jan 03 2020
-
Python
from itertools import count, islice from sympy import nextprime, prevprime def agen(): # generator of terms for k in count(4, step=2): kk = k*k if prevprime(kk//2+1) + nextprime(kk//2-1) == kk: yield k print(list(islice(agen(), 54))) # Michael S. Branicky, May 24 2022
Formula
a(n) = sqrt(A062703(n)). - Zak Seidov, May 26 2013
Extensions
Crossrefs section corrected and extended by M. F. Hasler, Jan 03 2020