cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074932 Row sums of unsigned triangle A075513.

Original entry on oeis.org

1, 3, 18, 170, 2200, 36232, 725200, 17095248, 463936896, 14246942336, 488428297984, 18491942300416, 766293946203136, 34498781924766720, 1676731077272217600, 87501958444207351808, 4880017252828686155776
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Examples

			E.g.f.: A(x) = x + 3*x^2/2! + 18*x^3/3! + 170*x^4/4! + 2200*x^5/5! +...
where exp(A(x)) = 1 + x + 4*x^2/2! + 28*x^3/3! + 288*x^4/4! + 3936*x^5/5! + 67328*x^6/6! +...+ A201595(n)*x^n/n! +...
		

Crossrefs

Cf. A201595.

Programs

  • Mathematica
    Rest[CoefficientList[Series[Log[x-LambertW[-x*Exp[x]]]-Log[2*x], {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Dec 04 2012 *)
    a[n_] := Sum[Binomial[n-1, k]*(k+1)^(n-1), {k, 0, n-1}]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jul 09 2013, after Paul D. Hanna *)
  • PARI
    {a(n)=sum(k=0,n-1,binomial(n-1,k)*(k+1)^(n-1))} \\ Paul D. Hanna, Aug 02 2012
    
  • PARI
    {a(n)=local(A201595=serreverse(x-x*tanh(x+x^2*O(x^n)))/x);n!*polcoeff(log(A201595), n)} \\ Paul D. Hanna, Aug 02 2012
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = O(x); for(k=1, n, A = log( (1 + exp( 2*x * exp(A))) / 2 )); n! * polcoeff(A, n))}; /* Michael Somos, Apr 10 2018 */

Formula

a(n) = sum(|A075513(n, m)|, m=0..n-1) = sum(binomial(n-1, m)*(m+1)^(n-1), m=0..n-1), n>=1.
E.g.f.: log(G(x)) where G(x) = (1 + exp(2*x*G(x)))/2 is the e.g.f. of A201595. - Paul D. Hanna, Aug 02 2012
E.g.f: log(x-LambertW(-x*exp(x)))-log(2*x). - Vaclav Kotesovec, Dec 04 2012
a(n) ~ n!/(sqrt(2*Pi*(1+LambertW(exp(-1))))*n^(3/2)*LambertW(exp(-1))^n). - Vaclav Kotesovec, Dec 04 2012
a(n) = A072034(n)/n. - Vladimir Reshetnikov, Nov 09 2016
O.g.f.: Sum_{k>=1} k^(k-1)*x^k/(1 - k*x)^k. - Ilya Gutkovskiy, Oct 09 2018