A074971 Number of partitions of n into distinct parts of order n.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 6, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 4, 1, 2, 1, 1, 1, 32, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 24, 1, 1, 1, 2, 1, 24, 1, 1, 1, 1, 1, 12, 1, 1, 1, 3, 1, 2
Offset: 1
Keywords
Examples
The a(36) = 6 partitions are (36), (18,12,6), (18,12,4,2), (18,12,3,2,1), (18,9,4,3,2), (12,9,6,4,3,2). - _Gus Wiseman_, Aug 01 2018
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
Crossrefs
Programs
-
PARI
A074971(n) = { my(q=0); fordiv(n,i,my(p=1); fordiv(i,j,p *= (1 + 'x^j)); q += moebius(n/i)*p); polcoeff(q,n); }; \\ Antti Karttunen, Dec 19 2018
Formula
Coefficient of x^n in expansion of Sum_{i divides n} mu(n/i)*Product_{j divides i} (1+x^j).
Comments