cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074973 Smallest index i such that next_prime( 2*prime(i) ) - 2*prime(i) = 2n - 1.

Original entry on oeis.org

1, 4, 11, 20, 17, 67, 104, 56, 125, 165, 182, 316, 236, 359, 407, 1254, 667, 836, 1521, 1210, 1966, 3197, 1520, 2294, 2279, 2046, 5410, 5472, 1965, 6702, 13947, 10138, 12122, 16760, 7659, 22325, 16784, 13072, 36169, 17852, 15414, 69872, 23814, 16370, 46752
Offset: 1

Views

Author

Zak Seidov, Oct 06 2002

Keywords

Comments

First index i such that NextPrime[p2=2*Prime[i]]-p2 is 2n-1; case n=1 corresponds to Sophie Germain (SG) primes, others may be called SG n-primes. Distance between 2*(n-th prime) and next prime in A059787.

Examples

			a(54) = 342337 because difference between 2*p(342337) and next prime is 2*54 -1 = 107 and 342337 is the smallest such index.
		

Crossrefs

Cf. A059787.

Programs

  • Magma
    S:=[];
    i:=1;
    for n in [1..45] do
       while not NextPrime(2*NthPrime(i))-2*NthPrime(i) eq 2*n-1 do
            i:=i+1;
       end while;
       Append(~S, i);
       i:=1;
    end for;
    S;  // Bruno Berselli, Oct 03 2013
  • Maple
    N:= 60: # for a(1) .. a(N)
    V:= Vector(N): count:= 0:
    p:= 1:
    for i from 1 while count < N do
      p:= nextprime(p);
      v:= (nextprime(2*p)-2*p+1)/2;
      if v <= N and V[v] = 0 then V[v]:= i; count:= count+1;  fi;
    od:
    convert(V,list); # Robert Israel, May 03 2025
  • PARI
    a(n) = {i = 1; while (nextprime(p2=2*prime(i)) - p2 != 2*n-1, i++); i;} \\ Michel Marcus, Oct 03 2013
    

Extensions

a(44)-a(45) from Bruno Berselli, Oct 03 2013