A075021 a(1) = 1; for n>1, a(n) = the largest prime divisor of the number C(n) formed from the concatenation of n, n-1, n-2, n-3, ... down to 1.
1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 54421, 370329218107, 5767189888301, 237927839, 1728836281, 136133374970881, 1190788477118549, 677181889, 399048049, 40617114482123, 629639170774346584751, 2605975408790409767, 65372140114441
Offset: 1
Examples
a(4)= 149 as 149 is the largest prime divisor of 4321 =29*149
Links
- Daniel Suteu, Table of n, a(n) for n = 1..106
Crossrefs
Programs
-
Mathematica
b = {}; a = {}; Do[w = RealDigits[n]; w = First[w];Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}];p = FromDigits[Reverse[a]];AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 21}]; b (* Artur Jasinski, Apr 04 2008 *) Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]]] [[-1,1]],{n,20}] (* Harvey P. Dale, Dec 14 2020 *)
-
PARI
a(n) = if(n==1, 1, vecmax(factor(eval(concat(apply(k->Str(n-k+1), [1..n]))))[, 1])); \\ Daniel Suteu, May 26 2022
Formula
Extensions
More terms from Sascha Kurz, Jan 03 2003
Name edited by Felix Fröhlich, May 26 2022