A075024 a(n) is the largest prime divisor of the number A173426(n) = concatenate(1,2,...,n-1,n,n-1,...,2,1); a(1) = 1.
1, 11, 37, 101, 271, 37, 4649, 137, 333667, 12345678910987654321, 17636684157301569664903, 2799473675762179389994681, 2354041513534224607850261, 2068140300159522133, 498056174529497, 112240064764214229701, 4188353169004802474320231191377
Offset: 1
Examples
a(5) = 271 as 123454321 = 41*41*271*271. a(25) = 12471243489559387823527232424981012432152516319410549 is the larger factor of the semiprime A173426(24) = A075023(25) * a(n).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..58 (terms 1..36 from M. F. Hasler)
- FactorDB, (121*10^(4*n-19) - 1002*10^(4*n-28) - 2*10^(2*n-9) + 879*10^10 + 121)/99^2.
Programs
-
Mathematica
Table[FactorInteger[FromDigits[Join[Flatten[IntegerDigits/@Range[ n]], Flatten[ IntegerDigits/@Range[n-1,1,-1]]]]][[-1,1]],{n,20}] (* Harvey P. Dale, May 20 2016 *)
-
PARI
a(n) = {if (n == 1, return (1)); s = ""; for (i=1, n, s = concat(s, Str(i));); forstep (i=n-1, 1, -1, s = concat(s, Str(i));); f = factor(eval(s)); f[#f~, 1];} \\ Michel Marcus, Jun 05 2014
-
PARI
A075024(n)=A006530(A173426(n)) \\ A006530 should provide efficient code and also covers the case n=1. - M. F. Hasler, Jul 29 2015
Formula
Extensions
More terms from Sascha Kurz, Jan 03 2003
a(16)-a(17) from Michel Marcus, Jun 05 2014
More terms from M. F. Hasler, Jul 29 2015
Comments