A075052 Write down squares and cubes in order, as in A002760. The sequence gives the first differences between terms.
1, 3, 4, 1, 7, 9, 2, 9, 13, 15, 17, 19, 21, 4, 19, 25, 27, 20, 9, 31, 33, 35, 19, 18, 39, 41, 43, 28, 17, 47, 49, 51, 53, 55, 57, 59, 61, 39, 24, 65, 67, 69, 71, 35, 38, 75, 77, 79, 81, 47, 36, 85, 87, 89, 91, 81, 12, 95, 97, 99, 101, 103, 40, 65, 107, 109, 111, 113, 115, 11
Offset: 1
Keywords
Examples
First sorted squares and cubes are: 0, 1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, hence a(1) = 1 - 0 = 1, a(10) = 64 - 49 = 15, a(12) = 100 - 81 = 19.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A002760.
Programs
-
Mathematica
Module[{nn=70,sq,cb},sq=Range[0,nn]^2;cb=Select[Range[nn]^3,#<=sq[[-1]]&];Join[sq,cb]//Union//Differences] (* Harvey P. Dale, Jun 11 2024 *)
-
PARI
lista(nn) = {vec = vector(nn, i, i-1); pp = select(i->(issquare(i) || (ispower(i, 3))), vec); for (i=1, #pp-1, print1(pp[i+1] - pp[i], ", "););} \\ Michel Marcus, Oct 03 2013
-
Python
from math import isqrt from sympy import integer_nthroot def A075052(n): def f(x): return n-1+x+integer_nthroot(x,6)[0]-(b:=integer_nthroot(x,3)[0])-(a:=isqrt(x)), a, b m = n-1 k, a, b = f(n-1) while m != k: m = k k, a, b = f(k) return min((a+1)**2,(b+1)**3)-m # Chai Wah Wu, Aug 09 2024
Comments