A075092 Sum of generalized tribonacci numbers (A001644) and reflected generalized tribonacci numbers (A073145).
6, 0, 2, 12, 6, 20, 50, 56, 134, 264, 402, 836, 1542, 2652, 5154, 9392, 16902, 31824, 58082, 106172, 197126, 360932, 662994, 1223784, 2245766, 4130520, 7606770, 13976436, 25711622, 47310252, 86978370, 160002656, 294324230, 541249952
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Wojciech Florek, A class of generalized Tribonacci sequences applied to counting problems, Appl. Math. Comput., 338 (2018), 809-821.
- W. O. J. Moser, Cyclic binary strings without long runs of like (alternating) bits, Fibonacci Quart. 31(1) (1993), 2-6.
- Index entries for linear recurrences with constant coefficients, signature (0,1,4,1,0,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6) )); // G. C. Greubel, Apr 13 2019 -
Mathematica
CoefficientList[Series[(6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6), {x, 0, 40}], x]
-
PARI
my(x='x+O('x^40)); Vec((6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6)) \\ G. C. Greubel, Apr 13 2019
-
Sage
((6-4*x^2-12*x^3-2*x^4)/(1-x^2-4*x^3-x^4+x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 13 2019
Formula
a(n) = a(n-2) + 4*a(n-3) + a(n-4) - a(n-6), a(0)=6, a(1)=0, a(2)=2, a(3)=12, a(4)=6, a(5)=20.
G.f.: (6 - 4*x^2 - 12*x^3 - 2*x^4)/(1 - x^2 - 4*x^3 - x^4 + x^6).
Comments