A075114 Perfect powers n such that 2n + 1 is a perfect power; the value of y^b in the solution of the Diophantine equation x^a - 2y^b = 1.
4, 121, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704
Offset: 1
Links
- M. A. Bennett, Products of Consecutive Integers, Bull. London Math. Soc. 36 (2004), 683-694
Programs
-
Mathematica
pp = Select[ Range[10^8], Apply[ GCD, Last[ Transpose[ FactorInteger[ # ]]]] > 1 & ]; Select[pp, Apply[GCD, Last[ Transpose[ FactorInteger[2# + 1]]]] > 1 & ] lim=10^14; lst={}; k=2; While[n=Floor[lim^(1/k)]; n>1, lst=Join[lst,Range[2,n]^k]; k++ ]; lst=Union[lst]; Intersection[lst,(lst-1)/2] (*T. D. Noe, Mar 29 2006 *)
Formula
Empirical G.f.: x*(117*x^4-4091*x^3+3951*x^2+19*x-4) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Dec 21 2012
Extensions
Extended by Robert G. Wilson v, Oct 15 2002
More terms from T. D. Noe, Mar 29 2006
More terms from T. D. Noe, Nov 19 2006
Comments