cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A075114 Perfect powers n such that 2n + 1 is a perfect power; the value of y^b in the solution of the Diophantine equation x^a - 2y^b = 1.

Original entry on oeis.org

4, 121, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704
Offset: 1

Views

Author

Zak Seidov, Oct 11 2002

Keywords

Comments

Note that the first ten numbers in this sequence are all squares. Except for 121, these squares are the y^2 in the Pell equation x^2 - 2y^2 = 1, whose solutions (x,y) are in sequences A001541 and A001542. The equation x^a - 2y^b = 1 is very similar to Catalan's equation x^a - y^b = 1, which has only one solution. Bennett shows that the equation x^2 - 2y^b = 1 has no solutions for b>2. Hence all the terms in this sequence are squares and solutions other than the Pell solutions must satisfy x^a - 2y^2 = 1 for a>2. The one known solution is 3^5 - 2*11^2 = 1. Are there any others? - T. D. Noe, Mar 29 2006

Crossrefs

Cf. A001597.
Cf. A117547 (square root of terms).

Programs

  • Mathematica
    pp = Select[ Range[10^8], Apply[ GCD, Last[ Transpose[ FactorInteger[ # ]]]] > 1 & ]; Select[pp, Apply[GCD, Last[ Transpose[ FactorInteger[2# + 1]]]] > 1 & ]
    lim=10^14; lst={}; k=2; While[n=Floor[lim^(1/k)]; n>1, lst=Join[lst,Range[2,n]^k]; k++ ]; lst=Union[lst]; Intersection[lst,(lst-1)/2] (*T. D. Noe, Mar 29 2006 *)

Formula

Empirical G.f.: x*(117*x^4-4091*x^3+3951*x^2+19*x-4) / ((x-1)*(x^2-34*x+1)). - Colin Barker, Dec 21 2012

Extensions

Extended by Robert G. Wilson v, Oct 15 2002
More terms from T. D. Noe, Mar 29 2006
More terms from T. D. Noe, Nov 19 2006