cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A084703 Squares k such that 2*k+1 is also a square.

Original entry on oeis.org

0, 4, 144, 4900, 166464, 5654884, 192099600, 6525731524, 221682772224, 7530688524100, 255821727047184, 8690408031080164, 295218051329678400, 10028723337177985444, 340681375412721826704, 11573138040695364122500, 393146012008229658338304, 13355391270239113019379844
Offset: 0

Views

Author

Amarnath Murthy, Jun 08 2003

Keywords

Comments

With the exception of 0, a subsequence of A075114. - R. J. Mathar, Dec 15 2008
Consequently, A014105(k) is a square if and only if k = a(n). - Bruno Berselli, Oct 14 2011
From M. F. Hasler, Jan 17 2012: (Start)
Bisection of A079291. The squares 2*k+1 are given in A055792.
A204576 is this sequence written in binary. (End)
a(n+1), n >= 0, is the perimeter squared (x(n) + y(n) + z(n))^2 of the ordered primitive Pythagorean triple (x(n), y(n) = x(n) + 1, z(n)). The first two terms are (x(0)=0, y(0)=1, z(0)=1), a(1) = 2^2, and (x(1)=3, y(1)=4, z(1)=5), a(2) = 12^2. - George F. Johnson, Nov 02 2012

Crossrefs

Cf. similar sequences with closed form ((1 + sqrt(2))^(4*r) + (1 - sqrt(2))^(4*r))/8 + k/4: this sequence (k=-1), A076218 (k=3), A278310 (k=-5).

Programs

  • Magma
    [4*Evaluate(ChebyshevU(n), 3)^2: n in [0..30]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    b[n_]:= b[n]= If[n<2, n, 34*b[n-1] -b[n-2] +2]; (* b=A001110 *)
    a[n_]:= 4*b[n]; Table[a[n], {n, 0, 30}]
    4*ChebyshevU[Range[-1,30], 3]^2 (* G. C. Greubel, Aug 18 2022 *)
  • SageMath
    [4*chebyshev_U(n-1, 3)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 4*A001110(n) = A001542(n)^2.
a(n+1) = A001652(n)*A001652(n+1) + A046090(n)*A046090(n+1) = A001542(n+1)^2. - Charlie Marion, Jul 01 2003
a(n) = A001653(k+n)*A001653(k-n) - A001653(k)^2, for k >= n >= 0; e.g. 144 = 5741*5 - 169^2. - Charlie Marion, Jul 16 2003
G.f.: 4*x*(1+x)/((1-x)*(1-34*x+x^2)). - R. J. Mathar, Dec 15 2008
a(n) = A079291(2n). - M. F. Hasler, Jan 16 2012
From George F. Johnson, Nov 02 2012: (Start)
a(n) = ((17+12*sqrt(2))^n + (17-12*sqrt(2))^n - 2)/8.
a(n+1) = 17*a(n) + 4 + 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1) = 17*a(n) + 4 - 12*sqrt(a(n)*(2*a(n) + 1)).
a(n-1)*a(n+1) = (a(n) - 4)^2.
2*a(n) + 1 = (A001541(n))^2.
a(n+1) = 34*a(n) - a(n-1) + 8 for n>1, a(0)=0, a(1)=4.
a(n+1) = 35*a(n) - 35*a(n-1) + a(n-2) for n>0, a(0)=0, a(1)=4, a(2)=144.
a(n)*a(n+1) = (4*A029549(n))^2.
a(n+1) - a(n) = 4*A046176(n).
a(n) + a(n+1) = 4*(6*A029549(n) + 1).
a(n) = (2*A001333(n)*A000129(n))^2.
Limit_{n -> infinity} a(n)/a(n-r) = (17+12*sqrt(2))^r. (End)
Empirical: a(n) = A089928(4*n-2), for n > 0. - Alex Ratushnyak, Apr 12 2013
a(n) = 4*A001109(n)^2. - G. C. Greubel, Aug 18 2022
Product_{n>=2} (1 - 4/a(n)) = sqrt(2)/3 + 1/2 (Koshy, 2022, section 3, p. 19). - Amiram Eldar, Jan 23 2025

Extensions

Edited and extended by Robert G. Wilson v, Jun 15 2003

A075014 Smallest k such that the concatenation k, k-1 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

1, 1, 2, 3, 1, 5, 2, 3, 5, 1, 17, 17, 6, 9, 11, 3, 16, 5, 7, 21, 2, 17, 18, 29, 26, 17, 5, 33, 8, 11, 35, 3, 17, 33, 26, 41, 11, 7, 17, 21, 13, 47, 4, 17, 41, 41, 27, 29, 9, 51, 50, 17, 21, 5, 61, 61, 35, 27, 52, 41, 29, 35, 68, 45, 6
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(14) = 9 as 14 divides 98.
		

Crossrefs

Programs

  • Mathematica
    skc[n_]:=Module[{k=1},While[Mod[FromDigits[Flatten[IntegerDigits/@{k,k-1}]],n] != 0,k++];k]; Array[skc,70] (* Harvey P. Dale, Mar 04 2023 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A075015 Smallest k such that the concatenation k, k+1, k+2 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

1, 2, 1, 4, 3, 2, 5, 4, 2, 8, 8, 4, 2, 104, 3, 18, 17, 2, 4, 18, 5, 8, 3, 4, 23, 2, 5, 118, 37, 8, 39, 18, 8, 34, 118, 14, 110, 4, 2, 18, 1, 104, 47, 10, 8, 32, 49, 18, 104, 48, 17, 142, 48, 8, 8, 118, 4, 66, 21, 18, 48, 70, 5, 50
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(13) = 2 as 13 divides 234.
		

Crossrefs

Programs

  • Mathematica
    Table[Module[{k=1},While[!Divisible[FromDigits[Flatten[ IntegerDigits/@ Range[k,k+2]]],n],k++];k],{n,70}] (* Harvey P. Dale, May 10 2012 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A075016 Smallest k such that the concatenation k, k-1,k-2 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

2, 2, 2, 4, 2, 2, 2, 4, 4, 2, 12, 4, 105, 2, 2, 4, 7, 4, 18, 22, 2, 12, 11, 4, 27, 118, 4, 106, 21, 2, 23, 14, 12, 34, 2, 4, 112, 18, 105, 22, 15, 2, 39, 34, 7, 14, 9, 4, 141, 52, 7, 118, 58, 4, 12, 106, 18, 50, 38, 22, 10, 54, 106, 14, 157
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(11) = 12 as 11 divides 121110.
		

Crossrefs

Programs

  • Mathematica
    skc[n_]:=Module[{k=2},While[Mod[FromDigits[Flatten[IntegerDigits/@ Range[ k,k-2,-1]]],n]!=0,k++];k]; Array[skc,70] (* Harvey P. Dale, Nov 01 2019 *)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A075127 Safe perfect powers: perfect powers n such that (n-1)/2 is also a perfect power.

Original entry on oeis.org

9, 243, 289, 9801, 332929, 11309769, 384199201, 13051463049, 443365544449, 15061377048201, 511643454094369, 17380816062160329, 590436102659356801, 20057446674355970889, 681362750825443653409
Offset: 1

Views

Author

Zak Seidov, Oct 11 2002

Keywords

Comments

If both powers are squares, the smaller square is a triangular number, and all square triangular numbers (A001110) correspond to a member in this sequence. This proves that this sequence is infinite. Are there only finitely many other members, i.e., is A075127 \ A055792 finite? - Charles R Greathouse IV, Dec 12 2010

Crossrefs

Programs

  • Mathematica
    pp = Select[ Range[10^8], Apply[ GCD, Last[ Transpose[ FactorInteger[ # ]]]] > 1 & ]; Select[pp, Apply[GCD, Last[ Transpose[ FactorInteger[( # - 1)/2]]]] > 1 & ]
  • PARI
    for(n=1, 1e10, if(ispower(n) && ispower((n-1)/2), print1(n, ", "))) \\ Altug Alkan, Oct 28 2015

Formula

Conjectures from Colin Barker, Oct 28 2015: (Start)
a(n) = 35*a(n-1)-35*a(n-2)+a(n-3) for n>5.
G.f.: x*(234*x^4-8182*x^3+7901*x^2+72*x-9) / ((x-1)*(x^2-34*x+1)).
(End)

Extensions

One more term from Robert G. Wilson v, Oct 16 2002
a(7)-a(15) from Donovan Johnson, Mar 10 2010

A117547 Numbers n such that 2*n^2+1 is a perfect power.

Original entry on oeis.org

0, 2, 11, 12, 70, 408, 2378, 13860, 80782, 470832, 2744210, 15994428, 93222358, 543339720, 3166815962, 18457556052, 107578520350, 627013566048, 3654502875938, 21300003689580, 124145519261542, 723573111879672, 4217293152016490, 24580185800219268
Offset: 1

Views

Author

T. D. Noe, Mar 29 2006

Keywords

Comments

The value of y in the solution of the Diophantine equation x^a - 2*y^b = 1. All solutions have b=2. Sequence A075114 gives n^2. The only known solution for a>2 is y=11. See A075114 for more details.

Programs

  • PARI
    Vec(x^2*(2-x-52*x^2+9*x^3)/ (1-6*x+x^2) + O(x^66))
    /* Joerg Arndt, Apr 28 2012, using Colin Barker's g.f. */

Formula

Conjecture: a(n) = 6*a(n-1) - a(n-2) for n>5; g.f.: x^2*(2-x-52*x^2+9*x^3)/ (1-6*x+x^2). - Colin Barker, Apr 28 2012

Extensions

More terms from T. D. Noe, Nov 19 2006

A075013 Smallest k such that the decimal concatenation of k and k+1 is divisible by n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 5, 5, 4, 9, 16, 1, 7, 5, 4, 19, 3, 13, 22, 19, 16, 27, 2, 19, 24, 7, 31, 5, 31, 19, 27, 19, 16, 3, 9, 31, 26, 41, 7, 19, 28, 37, 20, 27, 4, 51, 20, 19, 16, 49, 52, 35, 32, 31, 49, 5, 22, 31, 66, 19, 32, 27, 58, 19, 9, 49, 6, 35, 28, 9, 26, 67, 13, 63, 49, 79, 16
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(16) = 19 as 16 divides 1920.
		

Crossrefs

Programs

Extensions

Corrected and extended by Ralf Stephan, Mar 23 2003

A075017 Smallest k such that the concatenation k, k+1,k+2,k+3 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

1, 1, 3, 3, 2, 3, 2, 3, 3, 7, 8, 3, 7, 17, 12, 3, 5, 3, 19, 17, 24, 15, 17, 3, 22, 7, 3, 17, 17, 27, 6, 3, 15, 5, 2, 3, 9, 19, 15, 17, 15, 45, 44, 37, 12, 17, 39, 3, 45, 47, 21, 41, 52, 3, 37, 17, 57, 17, 62, 57, 53, 53, 66, 3, 7, 15, 2, 21, 63, 17, 12, 3, 6, 9, 72
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(7) = 2 as 7 divides 2345.
		

Crossrefs

Programs

  • PARI
    isok(k, n) = my(v = Str(k)); for (j=1, 3, v = concat(v, Str(k+j))); (eval(v) % n) == 0;
    a(n) = my(k=1); while (!isok(k, n), k++); k; \\ Michel Marcus, Jan 21 2017

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003

A075018 Smallest k such that the concatenation k, k-1,k-2,k-3 is divisible by n; or 0 if no such number exists.

Original entry on oeis.org

3, 3, 3, 5, 3, 3, 5, 5, 6, 3, 18, 9, 11, 5, 3, 15, 13, 15, 19, 23, 18, 29, 29, 15, 28, 11, 33, 5, 4, 3, 40, 15, 18, 13, 18, 15, 28, 19, 24, 23, 26, 39, 7, 51, 33, 29, 55, 15, 53, 53, 30, 63, 54, 33, 18, 5, 57, 41, 56, 63, 69, 71, 60, 15, 63
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(7) = 5 as 7 divides 5432.
		

Crossrefs

Programs

  • Mathematica
    Transpose[Flatten[Table[Select[Reverse[Partition[Range[100,0,-1], 4,1]], Divisible[FromDigits[ Flatten[IntegerDigits/@#]],n]&,1],{n,70}],1]] [[1]] (* Harvey P. Dale, Nov 22 2011 *)

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 19 2003
Showing 1-9 of 9 results.