cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A011185 A B_2 sequence: a(n) = least value such that sequence increases and pairwise sums of distinct elements are all distinct.

Original entry on oeis.org

1, 2, 3, 5, 8, 13, 21, 30, 39, 53, 74, 95, 128, 152, 182, 212, 258, 316, 374, 413, 476, 531, 546, 608, 717, 798, 862, 965, 1060, 1161, 1307, 1386, 1435, 1556, 1722, 1834, 1934, 2058, 2261, 2497, 2699, 2874, 3061, 3197, 3332, 3629, 3712, 3868, 4140, 4447, 4640
Offset: 1

Views

Author

Keywords

Comments

a(n) = least positive integer > a(n-1) and not equal to a(i)+a(j)-a(k) for distinct i and j with 1 <= i,j,k <= n-1. [Comment corrected by Jean-Paul Delahaye, Oct 02 2020.]

Crossrefs

Programs

  • Python
    from itertools import islice
    def agen(): # generator of terms
        aset, sset, k = set(), set(), 0
        while True:
            k += 1
            while any(k+an in sset for an in aset): k += 1
            yield k; sset.update(k+an for an in aset); aset.add(k)
    print(list(islice(agen(), 51))) # Michael S. Branicky, Feb 05 2023

Formula

a(n) = A010672(n-1)+1.

A026471 a(n) = least positive integer > a(n-1) and not of the form a(i) + a(j) + a(k) for 1 <= i < j < k <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 13, 14, 15, 25, 26, 27, 37, 38, 48, 49, 50, 60, 61, 71, 72, 73, 83, 84, 94, 95, 96, 106, 107, 117, 118, 119, 129, 130, 140, 141, 142, 152, 153, 163, 164, 165, 175, 176, 186, 187, 188, 198, 199, 209, 210, 211, 221, 222, 232, 233, 234, 244, 245, 255
Offset: 1

Views

Author

Keywords

Crossrefs

Formula

{1, 5, 13} union {n congruent 2, 3, 4, 14, 15 mod 23}, proved by Matthew Akeran. - Ralf Stephan, Nov 15 2004
G.f.: (9*x^11-7*x^10+9*x^8+7*x^5+x^4+x^3+x^2+x+1)*x/(x^6-x^5-x+1). - Alois P. Heinz, Aug 06 2018

Extensions

Edited by Floor van Lamoen, Sep 02 2002

A075123 a(n) is the least positive integer > a(n-1) and a(n) is not 2*a(i)+a(j) for 1<=i

Original entry on oeis.org

1, 2, 3, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, 46, 49, 54, 57, 62, 65, 70, 73, 78, 81, 86, 89, 94, 97, 102, 105, 110, 113, 118, 121, 126, 129, 134, 137, 142, 145, 150, 153, 158, 161, 166, 169, 174, 177, 182, 185, 190, 193, 198, 201, 206, 209, 214, 217, 222, 225, 230
Offset: 1

Views

Author

Floor van Lamoen, Sep 02 2002

Keywords

Comments

a(n) = A047452(n-2) for n > 3 because of first formula. - Georg Fischer, Oct 19 2018

Crossrefs

Programs

  • Mathematica
    Join[{1,2,3},Table[4n-10-Mod[n,2],{n,4,60}]] (* or *)
    LinearRecurrence[ {1,1,-1},{1,2,3,6,9,14},60] (* Harvey P. Dale, Oct 28 2012 *)
  • Python
    def A075123(n): return (n-2<<2)-2-(n&1) if n>3 else n # Chai Wah Wu, Mar 30 2024

Formula

a(n) = 4n - 10 - (n mod 2), for n>3. - Ralf Stephan, Nov 16 2004
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3. - Harvey P. Dale, Oct 28 2012
G.f.: x*(1+x+2*x^3+2*x^4+2*x^5)/((1+x)*(1-x)^2). - Georg Fischer, May 15 2019
Showing 1-3 of 3 results.